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FOREWORD

(U) The workperformed under this project is in response to requirements
of AFFTC Project 3058, Program Structure No, 750G, BPS5N 623148, The
Air Force Program Monitor is Iit. William Spangler, Air Force Rocket

Propulsion Laboratory, Research and Technology Division, Edwards.
California, .

{U) The present report is the technical summary of work conducted under
Contract AF 04(611)-10789 under which United Technology Center (UTC)is
conducting 2n experimental investigation of prepackaged hybrid propellant
systems, .

(U) This report covers experimental work conducted at UTC's Sunnyvale,

California, research laboratories and UTC's San Jose, California,process-
' ing laboratories during the period 1 April 1965 through 31 Jahuary 1966.
The following professional workers made significant contributions to prog-
ress on this program:

L. K, Asaoka J. H., Murray
R. Brogan M, W, Stark

R. W. Ebeling K, L. Tacke

G. A. Kinkel D, A, Talaska
R. A, Maraschin E. D. Vessel
D, R, Matthews J. Wing

‘(U) This report contains classified information extracted from "Experi-
mental Investigation of Prepackaged Hybrid Propulsion Systems (U), "
UTC 2141-QPR1, 15 August 1965, and UTC 2141-QPR2, November 1965,
CONFIDENTIAL, Group 4.

(U)

This technical report has been reviewed and is approved.

Approving Authority
is Lt, William Spangler
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ABSTRACT

(U) An applied research and development program is being conducted on
prepackaged hybrid propellant systems suitable for application to advanced
tactical missile requirements,

(U). Ani8-in.-diameter flight configuration hybrid motor has been designed,
fabricated, and tested in three motor firings. A high density, high specific
impulse, hybrid propellant combination has been formulated; and a fuel
grain has been developed which will provide nearly constant fuel flow rate
and wiil permit nearly complete fuel utilization. Dual-thrust injectors
have been developed and successfully tested. A simple thrust control
system has been designed, which will control the motor thrust at two levels
and will permit multiple starts at either thrust level,

{(U) The results of the program indicate that high density hybrid propul-
sion systems are feasible for application to advanced tactical missiles,
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O/F gravimetric mixture ratio of oxidizer to fuel
Py propellant bulk density, gm/cc
Pb"s ‘ propellant bulk density at 175° F gm/cc
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g gravitational constant, ft/sec?
AV vehicle burnout velocity, ft/ éec
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Pc chamber pressure, psi
m exponent expressing regression rate dependent
on chamber pressure
.Go _ oxidizer mass flux = on , 1b/sec-in?
P
A ox oxidizer flow rate, lb/sec
AP total cross-se,c.tional area of flzlel grain port

(varies with burning time), in,
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TAZ

THA
TFTA

B

Al

AP
QX/DER
R -binder

PBD

triaminoguanidine azide
triaminoguanidine azide — hydrazine azide
tetraformaltrisazine

boron

aluminum

ammonium perchlorate

3812 QX binder with DER curative
hydrocarbon binder

polybutadiene binder

fuel flow rate, lb/sec

fuel density, 1b/in}

perimeter dimension of burning fuel port,
for example = wD of cylindrical fuel grain

length of fuel grain, in,.
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SECTION I

INTRODUCTION
& -

(U) This report is a summary sf the work accomplished to date on Con-
tract AF 04(611)-10789. Under this contract, UTC has been conducting an
applied research and development program on prepackaged hybrid propellant
systems suitable for application to advanced tactical missile requirements.

{U) The program consists of an evaluation of candidate fuel systems and
ingredients for which studies were initiated under Contract AF 04(611)-8516,
development of flight-configuration thrust charnber components including
injectors and an oxidizer flow-control system, and demonstration testing
of complete flight configuration hybrid thrust chamber assemblies (TCA).

(U) The scope of the program was to develop, in a 9-month effort, a
flight configuration hybrid thrust chamber assembly which is capable of
delivering approximately 200, 000 lb-sec of impulse; the impulse to be
deliverable from storable prepackaged propellants at two thrust levels,
5,000-1b (boost thrust) and 2,500-1b (sustain thrust) with up to two motor
restarts after short coasting periods.

(U) The program has resulted in the development of all flight configura-
tion TCA components, including injectors, valves, fuel grain shape, nozzle
and thrust chamber, Numerous subscale motor tests and three full-scale

motor tests have been conducted with the components and thrust chambers.

These tests indicate that a high density hybrid propulsion system is feasible
for application to advanced tactical missiles,

UNCLASSIFIED
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SECTION 1I

SUMMARY

(U) An 18-in,-diameter hybrid thrust chamber assembly has been devel-
oped and test fired for durations up to 15 sec, The TCA is designed for-
1,000 psi chamber pressure during boost thrust (5, 000 1b) operation and
500 psi during sustain thrust operation, The thrust chamber assembly
includes injectors, valves, 240 1b of fuel, and the thrust chamber itself.
The motor will be capable of providing 200, 000 lb-sec impulse at either
constant thrust or dual thrust duty cycles which include multiple restarts,

(C) The program has resulted in the development of a castable fuel sys-
tem capable of on-off operation which contains 30% tetraformaltrisazine
(TFTA), 5% boron, 30% ammonium perchlorate (AP), and 35% binder. The
fuel has a theoretical specific impulse of 284 sec and a density impulse of
453 gm-sec/cc when used with an oxidizer of ClFg. The propellant system
has a growth potential to 295 sec specific impulse and 503 gm-sec/cc den-
sity impulse when processing and combustion characteristics are simulta-
neously resolved.

(C) A unique multiple port fuel grain shape has beendeveloped and success-
fully tested in subscale and full-scale motor firings which provides 92%
cross-sectional loading and only 6. 7% sliver. The grain shape, when used
with the selected fuel, will deliver essentially constant fuel flow rates and
will thereby provide a constant mixture ratio while permitting almost com-
plete fuel utilization. Seven of the full-scale fuel grains have been cast,
each weighing over 240 1b,

(C) The propellant studies which included 61 5, 0-in. motor tests,

48 3,5-in, motor tests, 79 laboratory research motor tests, and 34 optical
bomb tests which resulted in the successful dévelopment of three other
castable fuel systems in addition to the ones previously mentioned. All
four fuels contain TFTA, boron, AP, and binder and all may be suited for
advanced tactical missiles, The highest performance fuel has a theoreti-
cal specific impulse of 295 sec and a density impulse of 503 gm.sec/cc;
however, the combustion characteristics of this fuel limit its operation to
single or multiple thrust duty cycles without on-off operation.

 CONFIDENTIAL
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(U) A thrust control system was developed which will permit operation

of the TCA at either thrust level while maintaining essentially constant
mixture ratio, The thrust control system includes a dual element solenoid
valve, six dual flow injectors, and a single aft injector, The flight configu-
ration valve, which weighs 5 lb, was fabricated and bench tested in prepa-
ration for full-scale motor tests, and theinjectors have all beensuccessfully
tested in subscale and full-scale tests with durations up to 17 sec. The
unique injector design permits two flow rates to be injected for dual thrust
operation while maintaining an effective spray pattern, In addition, it pro-
vides positive shutoff at the injector face, thus preventing posttest contami-
nation of the feed system with fuel rich vapors.,

(U) Development of each of the components comprising the full-scale
thrust chamber assembly has progressed to the point by which each has
demonstrated performance consistent with the requirements of advanced
tactical missiles.

.
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SECTION III

PROPELLANT SELECTION

(U) Hybrid propellants, in-order to be suitable for application to tactical
missile systems, must deliver a relatively high specific impulse, and pos-
sess an adequate high temperature bulk density to meet both weight and
volume limitations. The fuel must not sustain combustion on termination
of oxidizer flow, it on-off operation is to be achieved. In addition, the pro-
pellants should provide smooth and reproducible hypergolic ignition and
efficient combustion, and should have exhaust products which produce favor-
able radar characteristics.

(C) Fuels consisting of TAZ, boron, AP, and binder were originally
selected for use with ClF5, BrFg, and ClO3F oxidizers for the development
of a propellant system meeting the above requirements. These fuels were
selected for development and for demonstration in full-scale motors because
calculations had shown that they could provide specific impulse values of
295 sec and density impulse values of 503 gm-sec/cc. Other fuels are avail-
able which exceed the selected combinations in performance but were not
considered because .of other disadvantages. For an example, higher specific
impulse (309 sec) is available with lithium-containing castable hybrid fuels
(25% Li/ 10% LiH/65% binder), but the lithium fuel has relatively low density
(0.8 g/cc) and unfavorable exhaust radar properties. Extremely highden~
sity impulse values (540. gm-sec/cc) can be obtained using high boronload-
ing and BrFg oxidizer, but they have correspondingly low specific impulse
values.

(U) System design studies were conducted with a view to the selection of
those propellant characteristics which yield maximum vehicle performance,
consistent with weight and volume restrictions of a typical missile system.
The studies were intended to determine the significance of specific impulse
versus density impulse with respect to overall vehicle performance.

(U) The propellant formulations found to offer greatest potential are those
which have the highest specific impulse while exhibiting a bulk propellant
density sufficient to meet the weight and volume limitations imposed by the
mission.. Increasing the bulk density of a high specific impulse system
.after the vehicle weight limitation is reached does not produce significant
returns in vehicle performance.

)
1
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(C) The conclusions reached from this study indicated that the oxidizers
selected should be limited to those which primarily produce high specific
impulse but with the highest possible density impulse. Therefore, the
criteria favors the use of Cl1F. with its generally higher specific impulse
rather than BrFg with its higher density impulse but generally lower speci-
fic impulse, The study indicates that C1F5/CIO3F mixtures offer increased
vehicle performance over ClFg when the oxidizer temperature does not
exceed 175° F, However, for systems whichoperate above that temperature,
the reduced bulk density of ClO;F contpining oxidizers severely diminish
vehicle performance. Up to 10% ClO3F may be used in systems which operate
at 175° F, but if oxidizer temperatures up to 195° F are anticipated, only
ClFg should be considered. The bulk density of propellant systems using
ClO3F can be improved upon by the addition of BrFg to the blend, but then
the reduction in specific impulse results in vehicle performance which is
no better than that obtained using pure ClFg as oxidizer.

(U) The study also indicates that no gain in vehicle performance would be
obtained by operating with mixture ratios (O/F) higher than stoichiometric
mixture ratio.

1. ANALYTICAL MODEL

(C) In order to determine the criteria for propellant selection, ananalyti-
cal model of a typical advanced tactical missile was developed., The model,
which is both weight -and volumé limited, is shown schematically in figure 1.
It has the following characteristics:

QOverall diameter 18.25 in.

Overall length 81.0 in,

Maximum chamber pressure 2, 000 psia

Overall weight 900 1b

Nozzle area ratio \ 8:1

Boost thrust 5, 000 1b

Sustain thrust v 2,5001b

Thrust cycle Boost-coast-sustain-

coast~boost.

" {C) Forty-two typical fuel formulations were selected for this study. The
ingredients in table I were used in combinations which took into considera~
tion propellant processability, propellant density, and performance. These
formulations are shown in table II. For the purpose of this study, these pro-
pellant systems are well characterized by the curves of figure 2. The valves
of Igp listed in table II would be approximately 8-10 sec lower if C1F; were
substituted for ClFg.
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SIX~-SPOKE GRAIN CONFIGURATION

(80% EFFECTIVE LOADING) CONVENTIONAL (70% BELL)

GAS GENERATOR
POSITIVE EXPULSION

ROLLING DIAPHRAGM

DUAL SOLENOID VALVE OXIDIZER /
FLOW CONTROL ASSEMBLY

21 LB OF MISCELLANEOQUS

HIGH-STRENGTH -
STEEL CASE CONSTRUCTION LUGS AND FITTINGS

K-51845

1

Figure 1. (U) Propulsion System Analytical Model

TABLE I
(U) PROPELLANT INGREDIENTS

Heat of Formation

Molecular AHf
Ingredient Weight kcal/mole

TAZ 147.16 +105, 7
TFTA 144, 19 " 486.2
Al 26.97 0 .
B 10.8 0
AP 117.5 -70. 7
PBD 54,09 . 47,4
QX 3812 102.0 -92.2
DER S 16,2 112
CIF, 130.5 -58.0
BrFg 174,92 -109
ClO,F 102,46 -10.1
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Figure 2. (U) Specific Impulse and Bulk
Density of Available Propellant Systems

(C) Since the final propellant to be selected may be required to withstand
a temperature environment in excess of 165° F, two temperature limits
(175° and 195° F) have been arbitrarily selectéd for density analysis.
Although these linear relationships result in a simpified analysis, study of
formulations containing the ingredients being considered indicate that sys-
tems could be formulated to meet (or closely approach) any point represented
by the lines in figure 2, At the same time, it has been found to be quite
difficult to formulate a system by conventional processing techniques that
significantly exceeds the performance represented by these lines.

(U) As a preliminary step in the analysis of this model, the minimum
propellant bulk density required to meet the weight and volume limitations
was calculated as a function of mixture ratio and motor mass fraction and
is presented in figures 3 and 4. Propellant formulations, with a dens:ty
greater than the indicated minimum, result in vehicles occupying a volume
less than the allowable maximum; whereas, formulations withlesser density
result in vehicles weighing less than the allowable maximum,
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Figure 2. (U) Specific Impulse and Bulk
Density of Available Propellant Systems

(C) Since the final propellant to be selected may be required to withstand
a temperature environment in excess of 165° F, two temperature limits
(175° and 195° F) have been arbitrarily selected for density analysis.
Although these linear relationships result in a simplfied analysis, study of
formulations containing the ingredients being considered indicate that sys- ]
tems could be formulated to meet (or closely approach) any point represented !
by the lines in figure 2, At the same time, it has been found to be quite
difficult to formulate a system by conventional processing techniques that
significantly exceeds the performance represented by these lines,

(U) As a preliminary step in the analysis of this model, the minimum
propellant bulk density required to meet the weight and volume limitations
was calculated as a function of mixture ratio and motor mass fraction and
is presented in figures 3 and 4. Fropellant formulations, with a density
greater than the indicated minimum, result in vehicles occupying a volume
less than the allowable maximum; whereas, formulations with lesser density
result in vehicles weighing less than the allowable maximum,
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TABLE U
(U) CANDIDATE PROPELLANT SYSTEMS FOR
"TACTICAL MISSILE PROPUILSION SYSTEM
Fuel . Oxidizer
T4 TEIA M B AR PBD QKDRR CGFy GO BrFs Ly, OF gn™ g
- 45 - 20 - - 35 (e 25 - 295 3.5 1,37 1,305
- 45 20 - - - 35 70 0 - 23¢ 2.5 1,35 1.280
40 - - 15 25 20 - 100 - - 291 2.2 1.83 1.50
15 - - 40 25 20 - 100 - - 289 2.6 1,57 t.54
30 - - 25 25 20 - 100 - . 285 3.5 1,54 1.51
50 - - - - 50 - 50 50 - 290 2.7 Q245  1.15
- £0 - - - 50 - 50 50 - 288 3.1 1,23 1.138
25 - - 30 25 - 20 100 - - 291 3.0 .56 1.528
29 - - 25 26 - 20 100 - - 293 2.6 1,555 1,525
33 - - 20 27 - 20 100 - - 294 2,3 1,546  1.515
37 - - 15 28 - 20 100 - - 295 2.0 1,54 1.513
4 - - 10 25 - 20 100 - - 295 1,75 1.545  1.82
30 - - 25 25 20 - 100 - - 289 2.6 .55 1.525
35 - - 30 15 20 - 100 - - 287 3.0 1.540  1.510
25, - - 20 35 20 - 100 - - 292 2.5 1.548  1.519
20 - - 15 45 20 - 100 - - 294 2.0 1.553 1,526
- 16 - 3 34 - 20 100 - - 290 3.0 1,563  1.53
- 19 - 25 36 - 20 100 - . 202 2,7 1.56 1.53
- 22 - 20 38 - 20 100 - - 292 2.4 155 1.52
- 25 - 15 40 - 20 106 - - 293 2.1 1,541 1.515
- 27 - 10 43 - 20 160 - - 293 1.7 1.535  1.510
- 22 20. - a8 - 20 100 - - 289 1.4 1.565 1,54
35 - - 20 13 - 30 90 10 - 293 2.8 1.467  1.425
35 - - 20 15 - 30 80 20 - 293 2,5 1.43 1.36
- 35 20 - 15 - 30 80 20 - 288 2.2 .42 1.36
- 35 20 - 15 - 30 90 10 - 285 2.0 1.458  1.414
- 35 20 - 15 - 30 100 - - 282 1.8 .50 1.47
- 55 - 25 - - 20 78 22 - 295 3.6 1,406 1,33
- 60 - 20 - - 20 75 25 - 296 3.3 1,38 1.305
- 65 - 15 - - 20 12 28 - 296 3.1 1.362 1,285
5 - - 3 5 20 - 50 - 50 266 3.3 1,758 1,727
35 - z 3 15 20 - - - 100 242 4.0 2,078 2,052
40 - - 0 - 20 - - 20 80 256 4.8 1,797 1,702
40 - - 40 - 20 - 20 20 50 266 4.4 17687 1,600
40- - - 40 - 20- - 40 20 40 276 4.0 1.594  1.513
40 - - 40 - 20 - 60 20 20 284 3.8 1,513 1.438
43 - - 40 - 20 - 80 20 - 293 3.6 1.444  1.370
- - - 55 30 15 - - - 100 240 5.3 2,196  2.166
- - - 55 30 15 . 25 - 75 253 4.5 1.997  1.964
- - - 55 30 15 - 50 - 50 264 4.2 1.840  1.804
- - - 55 30 15 - 75 - 25 275 3.9 1,708 1.672
- - - 55, 30 15 - 400 - - 285 3.5 1.600  1.56%
- 30 - 5 3 35 - 100 - - 284 2.0 1,458 1,432
9
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{U) Thecriteriafor propellant selectionare necessarilytiedto the require~
ments of the vehicle mission. However, since 2 precise missionisnot defined,
calculation of theoretical burnout velocity {(with due consideration to vehicle :
weight and volume limits) provides a basis for selection of propellant char~ P
acteristics which is superior to attaching arbitrary significance to specific !

impulse or combinations of specific and density impulse: ¢ h
(C) In an attempt to determine the significant criteria for propellant selec~ : zd
tion, the burnout velocity equation ;

Av = Ign o g . In (1 + p/K) b

has been used, where K is the design dependent variable (cftenreferred to
as the staging ratio) and is defined as M/V, where M is the vehicle burnout
weight, .and V, the propellant volume. Using the propulsionunit model refer- ,
i red to above, several series of propulsion units have been designed'wit}l 1o
' specific impulse and density values consistent with the curves of figure 2. ‘
The conclusions reached fromthis analysis are typified by the series désigned [
to a mixture ratio of 3.0 and payload weight.of 500 lb which is developed
below.

(U) The staging ratio for this series, calculated as a function of propellant

bulk density, is presented in figure 5. The discontinuity observed in this curve .
results from the volume and weight limitations imposed by thedesigncrite-

rida. Staging ratios, corresponding to propellant bulk densities below the

point of discontinuity, represent designs which are constrainéd by volume

limitations. Those above the point are constrained by weight limitations.

When the appropriate values of propellant density, specific impulse, and

design staging ratio are used to calculate the burnout velocity parameter,

optimized velocity values are achieved as indicated in figure 6.. Itisevident

that the optimum burnout velocity occurs at a propellant bulk density corre=< i
sponding to the point of discontinuity in figure 5.

2o A, S vt e L acede dxbad

(U) it may be concluded, therefore, that the propellant bulk density should i
‘be at least high enough to permit the loading of enough propellant to meet
the weight limitation, (i.e., bulk density of i, 47) when using the entire
allowable volume. Although desirable, an increase in density above this
minimum value has far less influence on perfoirmance and should not nor-
mally be made at the expense of specific impulse. Almost all propellants
under consideration possess bulk densities in excess of 1. 45.
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'(U) The miixture ratios listed in table II correspond to the optimum speci-

fic. iinpulse value for each formulation, Ananalysis has been made to deter-

mine whether & pevformance advantage could be had by operating off the

optimiuin. specxf < impulse mixture ratio. In order to accomplish this objec-
tive, .an. ci‘ ective propellant bulk density parameter was developed which
takes intor ‘a\.c. ount-fuel grain volume loading, slivers, liner, and oxidizer
tank gas generator effects, as well as relative densities of the fuel and
oxidizer, It was found that the variation of this parameter with mixture
ratio is very small, and that when these values are multiplied by the appro-

" priate specific impulse values, the maximum effective propellant bulk den-
sity impulse occurs at a mixture ratio corresponding to the maximum
specific impulse mixture ratio. This means that even.for the most critical
of volume-limitéd systems, the optimum design mixture ratio is the optimum
specific impulse mixture ratio.” -It should be noted, however, that this con-
clusion might not be. valid for a system with oxidizer and fuel densities
greatly different from those considered in this analysis.

2. ' PROPELLANT SELEGTION CRITERIA

(U) The selection of a fuel formulation containing TFTA or TAZ, boron
or aluminum, AP, and binder is guided by the processability of propellant
blends and the relative cost of ingredients in addition to performance and
‘propellant bulk density. Obviously, if a maximum performance blend of
the igredients were processable and resulted in a high density fuel which
would not sustain combusion on termination of oxidizer flow, then no further
consideration of the relative merits of each ingredient would be needed and
the maximum performance blend would be formulated, However, such is
not/the case and relative merits and limitations of each ingredient must be
weighed while reviewing the overall vehicle requirements. Witha knowledge
of.these merits and 11m1tat1ons, thé reader will be assisted in following the
developmental effort described in section IV of this document.

(U) The primary ingredient of-any fuel system is its binder, which is
génerally high in carbon.content but may vary in content of hydrogen, nitro-
gen, and oxygen. Of interest in the selection of binder is the guantity of
oxygen from.oxidizér of other fuel sourceés which is required to consume
carbon and produce high performance levels,

(C) Boron is the principal additive to thé fuel because of its high perform-
ance and density advantages when used with halogen oxidizers. Aluminum
could be used as an alternate to boronbut with some performance decrease.
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(C) High nitrogen additives such as TAZ and TFTA have a dual purpose

in hybrid fuel formulations, First they provide a means of maintaining high
performance where boron content is limited by processing or combustion
characteristics by providing working gas while minimizing increase in car-
bon content, Secondly, they provide a means of augmenting hybrid fuel
regression rate, apparently as a result of their high energy release on
decomposing. Their density is less that of the metal additive, and, there-
fore, they tend to contribute to a reduction in propellant bulk density.

(C) Ammonium pefchlorate also has a dual purpose in the formulations.
Its primary purpose is to provide oxygen to the combusion process in order
to achieve high performancelevels. Ammonium Perchlorate significantly
augments the regression rate of hybrid fuel formulations., In addition, its
relatively high density makes.it extremely desirable to be included in the
formulation. The only lifnitation on the use of AP is its tendency to cause
sustained combustion on termination of oxidizer flow, thus eliminating on-
off operation. The maximum AP loading level allowable to produce non-
sustaining fuel blend is affected by AP particle size, boron content, and
motor des1gn, but it may be as high as 40% of the fuel.

(C) Inorder td establish general guidelines for the selection. éfhigh density,
high specific 1mpulse propellants, ternary plots of the fuels were generated
using the hypothetical propellant formulations listed in table II. Figures 7
and 8 show formulation diagrams for TAZ, B, AP, binder and TFTA, B,
AP, binder systems. The ternary diagrams include only the fuel additives
representing 75% of the fuel blend, the binder content having been held to

an approximate practical limit of 25%.

(C). Due to the relatively low density of the nitrogen additives and binder,
the concentrations of these ingredients should be limited. Conséquently, less
desirable formulations lie outside the indicated areas (corresponding to
theoretical fuel densities less than approximately 1. 45 g/cc).

(Cy The carbonmonoxide stoichiometry lines shown inthe diagrams indicate
conditions wherein sufficient oxygen is provided by the AP to oxidize the
carbon present in the nitrogen additives and binder, assuming ClFg as the
liquid oxidizer. It is generally undesirable to formulate fuels with an
AP level in excess of that required for stoichiometry because the mixture
ratio tends to decrease. Formulations with a relatively high mixture ratio
are desirable because they permit more effective volume utilization as was
indicated in figure 3, The reduced required bulk occurs as a result of better
volumetric packaging of the liquid oxidizer. Atthe sametime, itisnotdesir-
able to reduce the AP level too far below stoichiometric, because the specific
impulse tends to decrease significantly as the formulations become oxygen
deficient. :
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(C) The discussion above does not considerthe alternative of adding ClOzF
to the oxidizer to increase the available oxygen. Ithas generally been found
that, at the 175° F temperatu¥e limit, adequate oxidizer density is main-
tained using CIC3F and specific impulse increased by using a C1F5/CIO3F
binary system, provided that the ClO3F level islimitedto 10% to 20% of the
liquid phase. By adding ClO3F, the AP requirement is reduced and, there-
fore, has the effect of shifting the desirable formulation area to lower AP
levels. The extent of this shift can be determined from the Cl103F — AP
oxygen equivalence curves presented in figure 9. The rapid decrease in
ClO3F density as its critical temperature is approached precludes its use
at the 195° F limit. Figure 10 illustrates the decrease in oxidizer density
as a result of increased ClO3F concentration, indicating the equivalent den-
sity of C1F5/ClO3F (90/10) at 175° F to ClFg (100 at 195° F). It should be
noted that adequate propellant bulk density can be maintained while using
CIO3F at the higher (195° F) temperature condition with a C1Fg/BrFg
ClO3F ternary oxidizer system; however, the required BrFg and CI1O3F
would result in a mixture with essentially the same bulk density and per-
formance as obtained by using only ClFS.
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Figure 9. (U) Oxygen Equivalence of Cl1O3F and NH,ClO4
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SECTION 1V

FUEL DEVELOPMENT

(C) Propellant studies have resulted in the successful development of
four high density, high specific impulse fuels which are suitable for pre-
packiged hybrid propulsion systems. However, one and possibly two are
not suited for advenced tactical missile applications requiring on-off opera-
tion because of their tendency to sustain combustion on termination of oxi-
dizer flow. The fuels all contain TFTA, boron, ammdnium perchlorate,
and R-binder and all are cdstable, One of the fuel systems was selected
for development of full.scale motors, The selected fuel contains 30% TFTA,
5% boron, 30% AP, and 35% binder, has a theoretical specific impulse of
284 sec and a density impulse of 453 gm-sec/cc when oxidized with Cl1Fj.
With further fuel development, the four component blend has a potential
specific impulse of 295 sec and density impulse of 503 gm-sec/cc.

(C)} A hybrid fuel grain shape has been developed using the fuel mentioned
above which provides a cross sectional loading of 92% with only 6. 7% sliver.
The grain is 18-in, in diameter and 20-in, long. It uses six "active" fuel
ports with seven "inactive' ports clustered about each 'active' port to pro-
duce essentially constant fuel flow rate as a function of burning time,

(U) The fuel and grain shape have performed as expected in subscals
motor tests with durations up to 17 sec and in two full-scale motor tests
with durations up to 15 sec.

i, FUEL STUDIES

{U) Fvogr hybrid fuel systems listed in table III have been developed which
appear to be applicable to advanced tactical missile propulsion systems.

{(C) Each of the fuels is suitable for use with ClFg oxidizer and will
deliver an increase in performance if C103F is added to the oxidizer in
small percentages. Fuel No, 1, which was selected for full-scale motor
development, is castable with ''as received'' ingredients, A 5. Q-‘-in‘. grain
of fuel No. i above is shown after test in figure 1i, Fuel No, 2 requires
the boron te be combined in a {:1 ratio with TFTA in particles called prills,
measuring 1/16 in, to 3/16 in, A sample of fuel No. 2 is shown in figure 2.
-Both fuels have been demonstrated to be nonsustaining in subscale motor
tests; Fuel No. 3 uses the AP in pellet form, as shown in figure {3, and

CONFIDENTIAL




R e T T N N SURUN, D e N i ey

e e

TABLE 111

(U) PREPACKAGED HYBRID PROPELLANTS DEVELOPED
AND TESTED UNDER THIS CONTRACT

Fuel System

1 2 3 4
TFTA, % 30 22.5 20 15
Boron, % ) 5 15 9 15
AP, % " 30 35 52 40
R-Binder, % 35 27.5 i9 30
CIFs" Oxidizer
Isp 284 288 294 292
pISp 453 475 503 491
ClFg/Cl1O3F Oxidizer Blends
L, 289 292 ——- .-
Pl 448 479 ——— -
Oxidizer 80% ClFg/ 96% ClFg/  --- -

20% C103F 10% C103F

* Performance figures are approximately 10% lowexr with ClF,

has been demonstrated to be nonsustaining in certain subscale tests. Howe
ever, additional fuel studies are required to be assured of nonsustaining
combustion characteristics, Fuel No. 4 is castable with "as received"
ingredients but is known to be a sustaining fuel system and is therefore
not suited for on-off operation. However, its performance and high regres-
sion rate (0. 16 in, /sec) make it extremely attractive for an application
where variable thrust operation is required and restart capability is not.

(U) These fuels were developed in studies which included investigation

of propellant system performance, processing techniques, and combustion
characteristics, Each fuel represents the maximum performance obtain-
able with the four components when present state-of-the-art processing
techniques and.the resultant fuel combustion characteristics are considered.
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(U) The fuel development studies were initiated using fuels containing
TAZ, boron, AP, and binder designated as QX 3812/DER 332, The TFTA,
aluminum, and a hydrocarbon designed as R-binder were retained as
alternate fuel ingredients in the event that development problems resulted.

{C) Based on early formulation studies and subscale motor tests, several
variations in the selected fuel components were chosen for possible use with
ClFg and ClO3F to develop high density, high specific impulse propellants.
Each variation, some using alternate fuel components, was selected on
the basis of minimizing certain formulation or combustion phenomena which
could produce development problems. Anumber of fuel formulations incor-
porating the alternate ingredients, listed in table IV, were selected for
investigation. Their order is one of decreasing performance and increasing
anticipated ease of formulation without resulting in.combustion problems.
Almost immediately, TFTA was substituted for TAZ which became tempo-
rarily unavailable.

(C) During the subscale motor test program, which was conducted to
develop one or more of the listed propellant combinations, it was found that
nearly all of the formulations tended to sustain combustion after termination
of oxidizer flow, It was also found that a crusty char developed in the fuels

containing boron whichdid not occur when aluminum was substituted for boron,

Since laboratory differential thermal analysis (DTA) studies had shown that
exothermic decomposition of TFTA and QX/DER binder occured at 266° F
(130° C), it was then postulated that this decomposition could be contributing
to the sustained combustion characteristics. A review of previous testing
with R-binder and similar fuel components, which did not sustain combus-
tion, tended to indicate that the R-binder could suppress the tendency to
sustain. It was, therefore, decided to discontinue further investigation of
fuels containing the QX/DER binder and continue work with R-binder systems.

(C) Thefuelsdevelopment efforthas produced two noteworthy achievements:

A, Solids loading levels of up to 85% have been obtained by
special compacting techniques. Approximately 60% solids
loading can be achieved with ''as received! TFTA, boron,
and AP. Thisloading can be further increasedup to about
65% or 70% using compacting techniques and up to nearly
75% using coarse particle AP, An ultimate loading of 80%
to 85% is feasible with pelletized .components.

B. Nonsustaining fuels were tested which contained up to 40%
AP, Previously, 15% AP was considered to be the upper
limit of solids loading without producing sustaining com-
bustion, The higher loading level was achieved by sub-
stituting 8§00y size AP for the nominal 175p ""as received"
AP,
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(C) Combustion has also been demonstrated with AP loading as high as
52% with the AP in the form of 3/16-in, -diameter pellets, However, the
metal additive in this case was aluminum rather than boron,

(U) Several fuel systems using the R-binder were selected for continued
development., The effort led ultimately to the successful development of
the fuels previously described. Two of the fuels qualified for full-scale
motor development for which initiation was already delayed as a result of
the fuel development problem. However, fuel No. 1 was selected for full-
scale motor development because it would provide fewer processing diffi-
culties in scaling up from laboratory batch sizes (80 1b) to full-scale motor
batches {250 1b), and had been found to have nonsustaining combustion
characteristics under more adverse conditions,

a, Propellant Performarnce

(C) The maximum performance of a four-component fuel con-
taining TFTA, boron, AP, and R-binder with ClF5 oxidizer
occurs when the fuel binder levelis heldto20% Maximum spe-
cific impulse ard density impulses are 294.7 sec, 503.1 gm-sec/cc
and 290.9 séc, 507.7 gm-sec/cc are obtainable, emphasizing first
maximum specific impulse then maximum density impulse,

{C) However, processing limitations do not at present permit
the formulation of castable homogeneous fuel blends with only
20% binder, In addition, high AP loading levels and high boron
loading levels contribute to sustaining combustion, Compro-
mises were, therefore, made in the formulation. In order to
obtain the maximum performance while imposing actual limita-
tions on the formulation, calculations were conducted over vary-
ing percentages of the critical ingredients,

{(C) The results of the calculations are shown in table V. These
results are presented in table V (A) as a function of varying
boron content with the binder content held constant, and main-
taining AP levels sufficient to oxidize all carbon, In table V

(B), the binder level and AP content are constant while the boron
and TFTA are varied, In table V (C) the AP level is held con-~
stant, The potential benefit which could be gained by using the
QX/DER binder is evident by comparing the figures of table V (D)
with those of table V (A). Approximate trends can be established
by cross-referencing.
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TABLE V
(U) SUMMARY OF PERFORMANCE CALCULATIONS
TFTA-BORON-AP-BINDER FUEL SYSTEM

Boron AP Binder

% % _%__  OF Isp
A, R-Binder, Binder Constant
.5 56 20 1.5 292.1
10 54 20 1.5 292.9
15 52" 20" 2.0 . 294.4
20 50 20 2.5 293. 1
25 47 20 2.5 292.2
30 45 20 2.5 290.7
40 40 20 3.0 287.1
4 B. R-Binder, Binder and AP Constant ’

5 " 40- 25 1.5 287.6
10 '40 .25 2.0 288.8
15 40 25 2.0 288.7
20 40 25 2.5 288.2
25 40 25 3.0 287.7

C. ‘R-Binder, AP Constant
25 30 ° 25 2.5 285.6
20 30 25 2.5 286.4
15 30 25 2.0 287.4
10 30 30 2.0 287.1
5 30 35 2.0 283.9
D. QX-Binder, Binder Constant
10 43 20 2.0 292.3
15 40 20 2.0 293.3
20 38 26 2.5 292.9
25 3% 20 2.5 291.9
30 34 20 3.0 290. 7

15 45 20 2.0 293.1

20 35 . 20 2.5 291.2
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Flsp

487.5
493.0
503. 1
506.8
507.6
507.9
507.9

463.9
477.7
481.8
483.3
489.7

482.9
480.3
473. 4
465. 1
453. 1

507.0




b. Propellant Ingredients

(C) The initially conceived fuel system contained TAZ, boron,
AP, and binder, The selected fuel system contains TFTA,
boron, AP and binder, Some of the considerations involved in
selection of the fuel ingredients are discussed in this section,

i. Binder

(U) The binder used during the initial investigation of high
density impulse propellants was a hydrocarbon binder desig-
nated as R-binder. This binder has already been extensively
tested on Contract AF 04(611)-8516 and UTC-sponsored pro-
grams and had been demonstrated to bé nonsustaining in
nearly all formulations, Just prior to initiation of this con-
tract, the QX/DER binder was selected for development
because of its greater oxygen content and its potential for
increasing performance or reducing the AP content,

(C) As interhalogen oxidizers, in general, are poor oxidizers
for carbon-containing fuels, it is desirable for good perform-
ance to minimize the carbon content and increase the oxygen
content of the binder, In order to include an oxidizing ele-
ment for carbon, thereby improving performance, various
oxygen-containing binders were investigated. This investi-
gation resulted in the selection of the QX /DER binder, This
binder, more accurately designated QX 3812/DER 332, was
studied extensively during this program. It contains 61.5%
carbon and 20% oxygen as compared to 80% carbon and 10%
oxygen in the R-binder. In a typical fuel system oxidized

by ClFg and ClO3F, the C1O3F content can be reduced by

5% using the QX /DER binder, and similar reductions are
possible in AP loading. Table VI describes the typical per-
formance levels which are theoretically attainable using the
QX /DER binder, Each system is optimized at its best per-
formance blend, so differences in formulation ratios exist.

(C) As an added advantage, the QX/DER binder offers
slightly higher density (1.1 gm/cc as compared to 1.0 gm/cc
for the R-binder system), and formulation studies conducted
with the QX /DER binder indicate that up to a 10% increase
in solids loading over that with the R-binder is possible
because of its lower viscosity. Typically, boron solids
loading can be increased from approximately 47% to 53%.
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TABLE VI
(U} PERFORMANCE OF QX/DER VERSUS R-BINDER SYSTEM

Isp pIsp

Fuel Oxidizer sec gm-sec/cc3 O/F
60% TFTA/20% Boron/  70% C1F5/30% C103F 294 461 4.0
20% R~Binder
60% TFTA/20% Boron/ 75% C1F5/25% C103.F 296 467 3.5
20% QX Binder
30% TAZ/25% Boron/ | ClvF.5 . 289 499 2.75
25% AP/20% R-Binder ’
30% TAZ/25% Boron/ CIF, 293 505 2.50

25% AP /20% QX Binder

(C) Because of the improvements in performance and solids
loading made possible by the use of the QX/DER binder, it
appears to be a superior system for application in high den-
sity hybrid fuel systems and, therefore, deserves continued
investigation, However, since the beginning of this contract,
conflicting data have been obtained concerning sustaining
character of fuels containing the QX/DER binder. These
include 5, 0-in, -diameter motor data obtained under Con-
tract AF 04(611)-8516 and 3. 5-in, tests conducted on this
contract, Under the other contract, fuels containing TFTA,
aluminum, AF, and QX/DER binder did not sustain combus-
tion when tested with C1F3. The same components tested in
three i12-in,-diameter motors did not sustain combustion in
one test but did on two subsequent tests, Similar tests con-
ducted with boron and the QX/DER binder consistently pro-
duced sustained combustion, Such contradictory data are
possible with marginally nonsustaining fuels as a result of
motor parts which tend to store heat energy and impose
additiondl heat loads on the fuel after shutdown by thermal
radiation. The tests discussed later, which were conducted
to resolve the discrepancy, resulted in sustained combustion
with fuels using QX/DER binder and AP loading levels as
‘low as 5%.
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(C) The data suggests that the sustaining reaction is one
that consumes the binder, TFTA, and AP and is augmented
by any char buildup that results from the use of boron. The
existence of this char and its relation to the boron was borne
out in a series of tests conducted with boron and aluminum
additives which are described later,

(U) The decision to discontinue use of the QX/DER binder
system was finally based on laboratory differential thermal
analysis {DTA), which revealed that TFTA decomposes endo-
thermically at about 1£0° C and that the products evolved
react exothermically with the QX/DER binder at 130° F.
Similar exotherms do not result with the R-binder and TFTA,

(U) The existence of an exothermic reaction in itself is not
cause for discontinuing use of the QX/DER binder, since exo-
thermic reaction of other fuel components is exploited to
obtain higher regression rates. However, when the binder
system contributes to the reaction, the separation of parti-
cles involved in the reaction is not possible and sustained
combustion tends to result, Further study might reveal a
means by which the QX /DER binder can be used, but for

now the R-binder holds greater promise in the development
of a high density hybrid fuel system.

(C) Laboratory DTA studies similar to those conducted with
the QX /DER system have been conducted with the R-binder
and .the various ingredients. The results of these studies
indicate that sxotherms similar to those obtained with the
QX /DER binder do not exist., The DTA studies were con-
ducted with R-binder; binder and boron; binder, boron and
AP; binder, TFTA, AP; and binder, TETA, boron and AP.
None of the tests exhibited exotherms below 225° C,

(C) The reversion at this point to the use of the R-binder
system was not made without supporting experience. Tests
conducted with the R-binder under both this and other pro-
grams are summarized in table VII. These tests include
extensive use of TAZ, TFTA, triaminoguaridine-azide/
hydrazine azide (THA), boron, and AP additives to increase
regression rate and improve performance.
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2. Boron
{C) Boron is the primary additive of the multiple component

fuel, because of its high density and relatively high perform-
ance with interhalogen oxidizers. There exist two areas of

investigation which are important to the successful formula-

tion of boron-containing fuels. The first is the loading level
of boron achievable in multiple~component fuels, and the sec~
ond is the combustion behavior. Boron 'as received! can be
loaded to approximately 47% of a total blend with R-binder
and to a lesser extent when other components are included.
Cenerally, the level of TFTA and boron combined cannot
exceed the binder content, Boron loading levels of 20% to

30% are practic_al', but the boron must be compacted, prilied,
or added to AP pellets to achieve extremely high loadings,
Higher loading levels using "as received' materials result

in fuel mixes which are too viscous to be castable., Satis-
factory combustion of boron has been found to be related to
both the fuel regression rate and the boron loading level,
i.e,, the level of boron in homogeneous fuel blends or the
level of boron in the matrix of compacted or large-particle-
containing fuels, Lower percentages of boron (less than 20%)
usually burn satisfactorily, whereas, loading levels greater
than 20% burn satisfactorily only if high .regression rates are
obtained, Without regression rate augmentation, there appears
to be a tendency for the boron to sinter or char rather than
burn where the concentration exceeds 20%. Bcron also tends
to aggravate existing sustaining problems because of its tend-
ency to form a, char layer by abscorbing heat and transferring
it to the fuel grain after motor shutdown.

3. Nitrogen Additives (TFTA, TAZ, THA)

{C)} Three nitrogen.containing additives have been included
in hybrid fuel research investigations conducted in the past.
Triaminoguanjdine-azide (TAZ); its double salt, THA; and
TFTA have been studied in the past as a means of augment-
ing hybrid fuel regression rate. . Work with THA was discon-
tinued because of its thermal stability limitations. In addition
to increasing regression rate as a result of their high energy
release, the crystalline additives increase the ratio of hydro-
gen and nitrogen to carbon.in the fuel, which is desirable to
obtain high performance with interhalogen oxidizers,
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(C) The use of TAZ results in higher performance multi-
component fuels or results in lower AP loading levels as is
indicated by table VIII, Howcver, the performance advan-
tage is reduced because of the unavailability and relatively
high cost of TAZ as compared to TFTA., Comparisons of
four-component fuels are made with optimized formulations.
Since experimental work conducted with TFTA has demon-
strated it to be as cffective as TAZ, the full-scale motor
fuel development included only TETA, Until a more signifi-
cant advantage with TAZ can be seen, TFTA is an adequate
substitute,

(U) Tetraformaltrisazine (TFTA) has the chemical formula
C4H{2Ng, and consists of 33, 35% carbon, 8.4% hydrogen,
and 58.4% nitrogen by weight. Exlensive work which has
been completed on TFTA is reported in the literature. *

TABLE VIII

(U) COMPARISON OF PERFORMANCE
OF TFTA VERSUS TAZ-CONTAINING FUELS

‘

Lip Isp

TFTA vs TAZ Oxidizer sec gm-sec/cc? O/F
50% TFTA/ 50% CIF /50% CLO,F 283 - 3,0
50% R -Binder >
50% TAZ/ " 50% CLF, /50% C10,F 290 ——- 3.0
50% R-~Binder .
19% TFTA/25% B/  CIF, 292.7 496.8 3.0
26% AP/
20% QX Binder
29% TAZ/25% B/ CIF 3 292.0 496.6 3.0

36%-AP/
20% QX/DER Binder

% Stolle, R., BER 40 1505. 1907. Hoffman, K., affd D. Storm, BER 45
1728, 1912. Nevreiter, J., Am. Chem, Soc., 81 2910, 1959.
Food Machinery Corporation, Classified' Lit, 1960, =~
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(U) lLaboratory studies were conducted with UTC-produced
TFTA to resolve discrepancies in properties of TFTA
reported in the literature, The heats of formation and
combustion of unrecrystallized TFTA were determined and
compared favorably to that as reported by Food Machinery
Corporation (FMC), The compared values are as follows:

UTG FMC
H, = +83,9£1.5 K-cal/mole +86. 24 K-cal/mole
. = 6.03320.012 K-cal/gm -6, 0 K-cal/gm,

(U) Impact sensitivity tests yielded no fires at 150 Kg-cm
(3 gm wt at 50 cm), indicating that TFTA is essentially
insensitive to impact, The density of TFTA as determined
at UTC 9 pycnometer) was found to be 1,31 gmm/cc and in
pressed form in 1, 09 gm/cc. .

4. Ammonium Perchlorate

(U) - Ammonium- perchlorate has a dual role in the multiple-
component fuel systems. It provides oxygen to react with
carbon contained in the fuel system and also augments the
regression rate,

(U) Ammonium perchlorate can be loaded in binder matrices
up to approximately 85% depending on particle size, In small
particle sizes (40 to 2004), AP has been found to produce
sustained combustion at levels exceeding 15% loading. How-
ever, nonsustaining hybrid fuels have been tested with 40%
loading using 600 to 800 particle AP,

(C) Maximum: performance of fuels containing TFTA, boron ‘
AP, and R-binder occurs when the AP level is approximately
50%. However, with homogeneous formulations this level
will produce sustained combustion, To produce nonsustain-
ing combustion characteristics, a reduced level of AP load-
ing is required. The CIO3F can be used to recover the
performance lost by reducing AP loading as discussed
previoulsy, but only at the expense of reducing oxidizer

bulk density.
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c. Formulation and Processing

(U) The formulation of a multicomponent fuel is controlled by
processing limitations imposed by the ingredients individually
and by combination with other ingredients. Processing studies
were conducted during the program to provide the means by
which the four components could be combined in the highest per-
formance nonsustaining formulation. lncluded in these studies
were investigation of solids loading, particle size improvement, I
thefmal stability, and physical properties. The results of these 1 g
studies are discussed in the following paragraphs. n

1. Solids Loading oo

(C) The maximum achievable loading for castable fuels it
varies from 60% to 80% depending on the constituents and ;
their relative particle sizes. Boron is available in two !
forms, amorphous and crystalline. Only amorphous boron 5
is considered for use because of the extremely high cost i
of crystalline boron. Amorphous boron is available in par- |
ticle sizes up to 40p. However, ''as received' boron has a ,
distribution of particles sizes from less than ip up to 40y, :
and it is the small particle material that limits castability. . f
It appears that "as received! elemental boron is limited to i
a maximum loading of 50% in binder, |

(C) In similar fashion TFTAand TAZ are limited to approxi- !
mately the same limit, Therefore, the combined TFTAand
boren loading limit is also 50%. The TFTA is received in a
distribution of particles which is between Op and 250pinsize
with approximately 70% between Op and 100y,

(U) "Ammonium perchlorate is available in particle sizes
from 175u to 800y and does not impose limitations on proc-
essing in any size range,

« atemn v e -

2. Proccessing

{C) .Because of limitations placed on maximum solids load- of
ing limits by the "as received" constituents, processing
studies were conducted to find the means of increasing the
maximum limit. These studies resulted in the development
of several techniques which can be used to increase the maxi-
mum .solids loading up to 85% These techniques include

e v o wan e
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compacting of the TFTA, agglomeration of TFTA, boron,
and AP into larger particles called prills, and pelletization
of TFTA, AP, with or without boron.

(C) Compacted TFTA or TFTA and boron, as shown in
figure 14, has been used to increase the maximum loading
of those two ingredients. The TFTA or TFTA and boron
are pressed into slabs which are then broken into chunks
and then added to the fuel matrix. Fuel grains up to 12 in.
in diameter, as shown in figure 15, have produced using
this technique, '

(C) Large particles, called prills, can be produced from
any of the fuel ingredients to increase solids loading, The
particles are made by mixing the ingredients in a slurry
with a soluble binder and a volatile solvent, The mix is
tumbled and vacuum dried to produce particles of any
desirable size. The use of prills made in a 1:1 ratio of
boron and TFTA permit an increase in the solids loading
from approximately 50% with '"as received" ingredients to
almost 75%,

Figure 14. (U) Boren/TFTA Chunks
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(U) 12-in, Hybrid Fuel Grain

Figure 15,
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(C) The particles can be made to practically any size,
Typical of those used are the AP, boron/AP, boron/TFTA,
and AP codted with boron/TFTA particles shown in fig-
ures 16, 17, 18 and 19, '

(C). Another technique to increasing the solids loading of a
fuel system is that of pelletizing the fuel ingredients. By
pelletizing, it is possible to attain more than 80% solids
loading and yet retain the advantages of castable fuels.
Pelletizing is accomplished by machine pressing the fuel
ingredients in 3/16-in. or 1/4-in, spherical pellets simi-
lar to those shown in figures 20 and 21, The pellets are
then cast in place with a binder or ‘composite matrix.

(C) Pellets of AP, TFTA, and AP/boron combinations have
been successfully tested. Other pelletized combinations
such as TFTA/AP and boron/AP are impact sensitive in
certain ratios and therefore cannot be used.

(C) Both coated and uncoated pellets have been cast in
5.0 fuel grains and have been tested. Pellet and particle
coatings, discussed in the following section, are applied
to inhibit interfacial contact and thereby reduce the tend-
ency to sustain combustion,

d. Physical Properties

(U) The fuel system to be used in full-scale motor development
was subjected to additional testing to determine its physical
properties. These properties are listed for two cure periods
as follows: '

- . After Additional Cure
With 42-hr Cure at 140°F of 3{ hr at 1{75°F

p = 0.04641b/in} . p = 0.0462 1b/in}

Tensile - 148 psi Tensile - 188 psi

Elongation - 39% ' Elongation - 32%

Autoignition - 625° F ’ Autoignition - 615° F

Drop hammer impact - Drophammer impa:ct -
25.8 kg~cm 23.6 kg-cm
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Figure 16. (U) AP Particles

Figure {7, (U) Boron/AP Particles |
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Figure 18. (U) Boron/TFTA Particles
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Figure 19.

(U) AP Particles Coated with Boron
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Figure 20. (U) Boron/AP Pellets Coated with Kel-F

Figure 21, (U) AP Pellets Coated with Boron
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{(U) Naval Ordnance Laboratory (NOL) detonation card gap
tests were conducted to further investigate the impact sensi-
tivity of the fuel. The tests resulted in no detonations with

zero cards, thus indicating the fuel to be insensitive to impact.

The NOL card gap tests are recognized to be a more accurate
means of determining the detonability of propellants. Pro-
cedures for NOL card gap tests are outlined in "Explosives
Hazards Classification Procedures' issued by the Air Force
as technical order. TO-11A-1-47,

e, Combustion Studies

{(U) Hybrid fuel combustion studies were conducted to evalu-

ate the combustion characteristics of candidate fuel systems.

Tests were conducted with a 1-in. laboratory survey motor,
shown in figure 22, to determine the nonsustaining charac-
ter of fuels and to determine. the influence of each fuel ingre-

dient. Additional testing was conducted with an optical bomb,

shown in figure 23, to evaluate large particle fuel ingre-
dients and their coatings which could not be evaluated in the
laboratory survey motor.

{C) The studies -have shown that nonsustaining fuels with
up to 40% AP can be produced and that the addition of boron
to the fuel tends to diminish that limit. The optical bomb
studies predict the nonsustaining characteristics of fuels with
large particles or pellets.

(U) The studies were initiated after subscale motor tesis
of candidate fuels failed to produce a suitable nonsustaining
fuel system. The problem which is discussed later was
attributed to the QX/DER binder system, but in solving the
problem it became apparent that the sustaining character-
istics of a fuel were not easily identifiable from subscale
motor tests. The following discussion will serve to describe
the problem of identifying the sustaining characteristics of
a fuel.

(U) A highly loaded AP/binder fuel is a solid propellant
and clearly will sustain combustion after termination of
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oxidizer flow when used as hybrid fuel. It is also evident -

that hydrocarbon binder, with no oxygen-containing addi-
tives, will not sustain combustion when enclosed in a motor
case. However, most advanced hybrid fuels use oxygen-
containing or other reactive additives which place the fuel
between these limits of sustaining and nonsustaining char-
acteristics. Under certain circumstances these fuels may
sustain combustion, and under other circumstances, they
appear to sustain combustion when, in fact, they do not.

(U) The best definition of a nonsustaining fuel is one which
permits abrupt termination of thrust and which also does
not continue to consume or degrade itself after oxidizer
flow is terminated. Even pure binder can appear to sus-
tain combustion if large quantities of graphite and non-
ablative insulation materials are used in the construction
of the motor. These materials, which can absorb heat
during the firing, can radiate or conduct energy to the
adjacent fuel or insulation materials after the firing. Vola-
tilization of fuel and insulation then results until the motor
components are sufficiently cool. Meanwhile, reaction
of the volatiles with air outside the motor gives a false
impression of continued internal combustion, the dura-
tion of which is dependent on the size and type of heat
absorbing materials used.

(C) An example of this apparent sustained combustion
are three 5.0-in. motor tests (Nos. 342, 344, and 345,
table IX) in which the fuels were (No. 342) 100% R-binder;
(No. 344) 20% boron, 10% AP, and 70% R-binder; and
(No. 345) 50% TFTA and 50% R-binder. In test No. 342,
after abrupt and complete thrust termination, external
combustion continued at the nozzle for 8 sec and smoke
continued to billow from the nozzle for 8 additional sec.
In each case of tests No. 344 and No. 345, smoke con-
tinued to exhaust from the nozzle for approximately 15 sec,
and again no thrust or chamber pressure was recorded.
Postfire inspection of the fuel grains revealed no evi-
dence of sustained combustion. Since no reactive prod-
ucts could originate from the fuel in tests No. 342 and
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No. 345, the smoke can be gxttributed only to transient vola-
tilizatior. of the fuel by means of heat loads imposed by the
mixer.

(C}) When oxygen-containing fuel ingredients are used, the
additional heat radiated from hot motor componentis is some-
times sufficient to volatize the binder and additives and per-
mit continued internal combustion. Therefore, a normally:
nonsustaining fuel may become a self-sustaining fuel when
subjected to these additional heat loads. Tests Hi17A-1, 2,
and 3 were conducted with the fuel containing 30% TFTA,
5% boron, 30% AP, and 35% R-binder, which was selected
for full-scale motor development and was known to be non-
sustaining in laboratory tests. Using a graphite mixer in
test No. 1, the fuel sustained combustion after termination
of oxidizer fiow. Again no thrust and chamber pressure
were recorded, although smoking continued for more than
30 sec. DPosttest inspection showed degradation of the fuel
‘especially near the mixer assembly with some unburned fuel
remaining at the injector end of the motor. A composite
mixer of ablative materials and graphite was used in the
subsequent test and no mixer at all was used in the third
test, Neither motors sustained combustion although some
posttest smoke was generated in motor No. 2. No evidence
of velatilization occurred with motor No. 3.

(C) The apparent and actual sustaining tendency is further
aggravated by use of high loading levels of ‘boron in homo-
geneous fuel blends. Boron increases the conductivity of the
fuel, causing a temperature increase in the fuel sublayers

which results in increased volatilization of the fuel components,

(U) If the volatile components are not reactive, the result
is the extensionof postfire smoke generation, with the possible
development of a hard sintered boron structure in the fuel
grain. If ‘the {uel contains oxygen, the ensuing reaction at
the fuel surface miay not be intense but can in some cases
liberate sufficient heat to prolong combustion until all ox part
of the fuel is consumed or degraded. In this case, the boron
sintered structure receives energy irom the reactants, and
returns it by conduction to the unburned fuel sublayers to
propagate the reaction.
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(C) It was theorized and later discovered to be true that highexr
regression rates would tend to suppress the tendency to sustain
combustion. The motor of test No, H-17A-~7 used a fuel contain-
ing 25% TFTA, 15% boron, 35% AP, and 25% binder with graphite
and phenolic mixer parts., The motor terminated thrust and
chamber pressure on termination of oxidizer flow without post-
test smoke generation, but after approximately 10 sec heat loads
imposed on the fuel by the mixer components were sufficient to
reignite the motor. The test indicates that higher regression |
rates tend to inhibit sustaining characteristics. The fuel con-
tained higher AP and boron levels than did the other fuels and
yet shut off without postfire combustion or smoke. The rapid
termination of combustion can be attributed only to having cooler
fuel surface sublayers as a result of the high regression rate of ;
this fuel, Self-ignition of the motor aftexr shutdown indicates the %
intensity of the heat loads emanating from the mixer.

(C)} Sustained combustion will result from an exothermic reac-
tion of the fuel components at the grain surface. Of the fuel
components used, only AP has the capacity to react with suffi- !
cient energy to cause sustained combustion in this manner with- ‘
out externally applied heat loads. However, the loading limit of
AP without sustaining has been well established at 40% for coarse
particle AP and 15% for 'as received'" AP, The boron loading
limit has also been established and the sustaining combustion
problem has been resolved in propellant development studies

with respect to the fuel alone. The problem now extends into

the arca of engineering design and materials selection for full-
scale motor components as well. The problem will be finally
resolved in full-scale motor configurations, since only in the
full-scale motor can design and material selection be simulta-
neously applied.

(C) As result of the combustion studies, three nonsustaining
castable fuel systems were selected for possible application to
full-scale motor development testing. The nonsustaining fuels
are listed as follows:

A 30% TFTA 5% Boron  30% AP 34% R -binder
B#  25% TFTA  15% Boron 35%AF  25% R-binder
ct  22.5%TFTA 15%Boron 35%AP 27.5%R-binder

% In both fuels, boron and TFTA were included in the form of large particles.

f Fuel C is similar to fuel B but uses increased binder content to improve §
castability.
53
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(C) Fuel B is similar to fuel A with the exception of the beron
content., Since fuel A is of superior performance, further con-
sideration of the fuel B is unnecessary.

(C) The tests indicate that the higher performance fuel B may
be suitable for use now in full-scale motor development, Its
nonsustaining character must be verified in full-scale motor
designs which min‘mize heat loads from nozzle and mixer com-
ponents. However, at the present time, the full-scale motor
development effort requires a fuel which will not sustain under
the most adverse conditions; therefore, fuel A was selected.

f. Laboratory Studies

(C) A total of 79 laboratory motor tests were conducted to deter-
mine the sustaining characteristics of TFTA, boron, AP, and
R-binder-containing fuels without the heat fiux effects normally
contributed by motor components in subscale (5. 0 in,) tests,

The tests were conducted with the motor shown in figure 22 and
used gaseous oxygen as oxidizer at a flow rate of 0. 01 lb/sec,
The tests which are listed in table X were designed to evaluate
the effects of each fuel component on the sustaining characteris-
tics of the fuel blend. The formulation variables which affect
the combustion characteristics include the content, particle size,
total solids loading, and type of precompacted particles,

(C) A significant development was achieved with the discovery
that formulations containing 40% AP are nonsustaining, so long
as the AP particle size is large (at least 600 to 800p) and the
boron centent in the binder matrix is kept low (10% or less).

(C) The nonsustaining AP loading limit had previously been
established at approximately 15%, using '"as received'' AP which
was nominally 175p size. The tests indicate that no significant
increase in the AP loading limit is obtained by increasing the
AP particle size from 800p.,

(C) It is evident that the AP loading limit is significantly affected
by boron content but not the TFTA content of the fuel, With high
boron content in the binder matrix, the fuc! conductivity is signi-
ficantly increased and as a result the fuel sublayers become very
hot during combustion, thus vaporizing the volatile components
until the available energy is used and the unburned fuel returns

to a lower temperature. This condition was eliminated in some
compositions containing boron by precompacting boron in prills
or chunks with either TFTA or AP thereby removing it from the
binder matrix.
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?
(C) The focllowing formulations represent the upper loading limits
of AP in fuel blends containing various percentages of boron while
retaining nonsustaining combustion characteristics,

AP Boron TFTA R-Binder
_(Z’l. % ‘ % %
40 10 20 30
35 15 20 30

(C) More than 40% AP in the matrix without ahy boronwill result
in a sustaining fuel. By putting the boron and TFTA in particle
form, the concentration of AP in the matrix is increased above
the maximum level and therefore results in sustained combus -
tion although no boron may be included in the matrix itself.

1. Optical Bomb Studies

(U) Optical bomb studies were conducted to determine the
mechanism of sustaining fuel systems and to determine
means of preventing this phenomenon in highly loaded large
particle fuel systems.

(U) The optical bomb shown in figure 24 consists of a high-
pressure container with a viewing window in which small
solid propellant samples can be burned, With this instru-
ment, high-pressure nitrogen and an adjustable exhaust
valve can be used to evaluate hybrid fuel samples at oper-
ating pressures up to 2,000 psi.

{U) For evaluation of hybrid fuels, samples 1 in. by 1 in.
by 2 in. are placed in the bomb adjacent to solid-propellant
charges. The flame from the solid propellant, which is
ignited by hot wires, is directed onto the surface of the
hybrid fuel grain. The behavior of the fuel sample is then
viewed -after the solid-propellant charge is éxhausted.

2. QX/DER Binder Evaluation

(C) Initial tests conducted with the optical bomb were made

with fuels containing TFTA, boron, AP, and QX/DER binder in

essentially the same formulation as thatused in earlier 3. 5-in.-

diameter motor tests where sustained combustion had occurred.

The, AP loading levels in these tests were as low as 5%. The

optical bomb tests, described in the following paragraphs,
v
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tend to confirm the results of the 3. 5-in,-diameter motor
tests, which indicate that heat loads imposed by the motor

components were (in this case) not responsible for the sus-
taining character of the fuels,

(U) The initial tests exposed the four-component hybrid
fuel to the flame from a strip of solid propellant at various
pressures. If the samples ignited, the bomb was depres-
surized and the pressure at which point combustion termi-
nated was noted. The results are given in table XI. It was
found that all formulations having AP levels ranging from
7.5% to 15% sustained combustion, All the propellant sam-
ples except one sustained at a pressure below 100 psi, and
it is probable the same thing would happen in a motor fuel
grain configurat’on without the heat input frorn surrounding
hot motor compounents.

(U) The sustaining reaction of these formulations is not
typical of solid propellants; there is no flame, but there
is a-considerable amount of smoke and ejection of some
white-hot metal particles at higher pressures. The reac-
tion; which can be described as a fizzing reaction, reduces
the binder to a gummy sinter., The residual material in
these tests did not become red hot.

3. Studies with Particles, Pellets and Coatings

(U) Optical bomb studies were also conducted with fuels
contgining either large particles or-pellets to evaluate the
nonsustaining character of highly loaded propellants. These
fuel samples were similar to the ones shown in figures 24
and 25. The results of the studies are listed in table XI.

(Uy These tests included evaluation of pellets and various
particles sizes. Coating techniques were also involved, as
were variations in the matrices of the test samples. The
optical bomb studies are not known to reproduce exactly

the conditions of subscale motor tests. It can be said, how-
ever, that fuels which would sustain combustion in optical
bomb tests would certainly sustain combustion in motor tests,

(C) Large particles or pellets provide a means of including
AP, AP and boron, or boron and TFTA into .« fuel grain simi-
lar to the one shown in figure 13 with solids loading in excess
of 80%. The formulation of a fuel containing only 20% binder
greatly increases the number of available high-performance fuels,
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Figure 24. (U) Optical Bomb Samples

.

Figure 25. (U) Fuel Samples Containing Pellets and Particles
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{C) To prevent interfacial burning of the pellets, coatings of
various materials including fucl ingredients were cvaluated.
The pellets and particles with coatings were cast into fuel
graihs which included matrices of binder, and of mixes of
one or more of the four ingredients, The results indicate
that the AP particle size and boron content in the matrix is
seen as a significant factor in the nonsustaining character
of fuels. Matrices containing 36% AP, 24% boron, 40% binder
sustained combustion and could not be inhibited by covering
the AP particles with thin Kel-F coatings (tests 4, 5, and 6);
whereas matrix formulations containing up to 40% large
particle AP do not sustain if they do not contain boron.
Boron apparently ¢an be used in the matrix using the same
ground rules that apply to homogeneous fuels tested in labo-
ratory motors, that is, maximum AP loading of 40% and low
(10%) boron content, :

(C) Thin coatings of Kel-F and boron are sufficient to pre-
vent interfacial burning of 100% AP pellets, but the intense
reaction of AP/boron pellets requires increased coating
thicknesses to prevent sustained combustion.

(C) The optical bomb studies indicate that formulations in
practically any ratio up to 80% solids loading can be used to
prepare high specific impulse, high density nonsustaining
fuel combinations. Although large particle sizes and pellets
involve certain undesirable processing procedures which -
are cumbersome to small quantity production of fuels, it is
entirely conceivable that fuels containing large particles,
compacted particles, or pellets can be produced in large
production scale without significantly increasing propellant
costs. Although propellants of this category have not been
characterized at this time for use in full-scale motor tests
of this program, they do have the potential for allowing high-
.performance gains not otherwise available,

4, Subscale Motor Test Program

(U) Candidate fuel systems were evaluated in two subscale
motor sizes, A 3.5-in,-diameter motor, which is shown
schematically in figure 26, was used to screen fuel samples
from laboratory:mixed batches involving only 1 .or 2 1b of:
fuel per motor. The 5, 0-in.~-diameter motor, shown in
figure 27, was used to characterize the regression-rate
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Figure 27. (U) 5.0-in.~Diameter Hybrid Motor

behavior of fuels which previously have been screened in the
3.5-in.-diameter motor, and was also used in evaluation of
injectors and components. The 5. 0-in, -diameter motor
requires 10 to 20 1b of fuel.

5. 3.5-In, Motor Tests

(U) The 3.5-in, motor was used in 48 {ue’ development
tests which were divided into five series, :ll test used the
QX/DER binder which was subsequently replaced by the
R-binder. These fuels also use small particle (175p) AP
which was subsequently replaced by 600p to 800p AP, Test
of the R-binder fuels was continued in survey motor tests
previously described ahd 5. 0-in. motor tests described in
subsequent sections, .

(C) The initial 3, 5-in,-diameter motor tests, series I (see
table XII) were originally directed toward obtaining prelimi-
nary regression rate data for fuels containing T¥#TA, boron
AP, and QX/DER binder, these fuels being siated for use in
full-scale motor testing, However, the initial tests indicated
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that the fuel system sustained combustion with almost all
formulations. The test series was therefore directed toward
redefining the maximum AP loading for nonsustaining fuels.
The AP loading was reduced in each subsequent pair of
3.5«in,-diameter motors to obtain the upper AP loading
limit, However, each of the fuel blends sustained combus-
tion down to a limit of approximately 7, 5% AP loading, It
was observed in each case that a char layer existed which

at first was thought to be attributed to the sustaining charac-
ter. However, the final motor tests of series I for which
the fuels contained no AP, also demonstrated charring after
shutdown, as shown in figure 28 The charring appeared tc
be related to the boron content of the fuel,

(C) Previous tests conducted on Contract AF 04(611)-8516
using aluminum instead of boron and others using the
R-binder instead of the QX /DER binder had demonstrated
satisfactory shutoff without charring. Therefore, a second
test séries (II) was initiated to determine the relationship
between charring and using aluminum and mixtures of alumi-
num and boron (sustained combustion) as the metal additive.

(C) Ratios of boron and aluminum mixtures were varied
while the total metal content and TFTA, AP, and QX/DER
binder ratios were constant.

(C) The depth of char and the tendency to sustain combustion
were found to varyin direct proportion to the boron content,
Occasionally, even fuels containing aluminum and no boron
sustained combustion, although the tendency was significantly
reduced. Fuels containing aluminum but not boron produced
contradictory results, in that the sustaining character of the
fuel was independent of AP content, Fuels with 15% AP did
not sustain combustion while fuels with no AP did sustain
combustion.

(C) The discrepancy between these data and previous data
using the R-binder suggested that the QX /DER binder along
with the boron charring phenomena may contribute toward
the tendency to sustain combustion, Subsequent laboratory
studies discussed previously tended to substantiate this
theory,

.
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‘ Figure 28, (U) Fuel Charring After Shutdown

CONFIDENTIAL

(This page is Unclassified)




(C) The higher AP loadings (15%) produced significantly
higher regression rates, and it was theorized that the high
regression rates would reduce heat transfer to the fuel
grain and thereby reduce the tendency to sustain combustion,
A third test series (III) was then conducted to determine
whether augmented regression rates could reduceé the char-
ring and sustaining tendency, Two tests were conducted to
determine if by augmenting the regression rate with high

4 AP loading, the charring, which occurred during other tests,
would be eliminated, The tests included one motor with
boron and one with aluminum as the metal additive, Although
the fuels sustained combustion as expected, no sintered
boron charremained, The motor containing aluminum used
as a reference $ystem performed identically, Both fuel
systems; incidentally, would make ideal fuels, with respect
to performance and physical properties, for a hybrid pro-
pulsion system requiring thrust variation, but not on-off
‘operation, -

(U) It was concluded from these tests that the sustaining
combustion problem was related to the use of the oxygen-
containing QX /DER binder system. The laboratory studies
previously discussed tended to substantiate this theory.
However, the boron char, associated with high boron load-
ing and low regression rates contribute to the problem.
The use of the QX/DER binder system was discontinued in
favor of the proven R-binder system as a result of these
tests, However, subsequent test experience has shown that
the use of relativelylarge quantities of graphite in the mixer
assembly “can produce the sustaining characteristics
observed on these tests. Further testing should be con-
ducted to verify the sustaining characteristics of the QX/
DER binder before it is dismissed entirely,

(C) A fourth series of 3, 5-in.-motor tests was conducted
to evaluate pelletized fuel systems, Tests conducted on
Contract AF. 04(611)-8516 produced nonsustaining pelletized
fuels: when aluminum was used as the metal additive and
had resulfed in a sintered char and sustained. combustion
‘when boron was used, The fuel grains shown after test in
figures' 29 and 30 used AP pellets which were in contact with
each other when . cast, All other additives wereinciuded in
the matrix, Since pelletizing removes approximately 50%
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(U) 5.0-in. Fuel Grain Containing
Boron and Pelletized AP, After Test

Figure 29,
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Figure 30, (U) 5,0-in. Fuel Grain Containing Aluminum
and Pelletized AP, After Test
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of the ingredients from the matrix, the ratics of the ingre-
dients become doubled. Therefore, 20% boron becomes
40% of the matrix, and 40% boron without some means of
promoting boron combustion results in the sintered struc-
ture and sustained combustion,

(C) Test series IV was therefore initiated to develop a
pelletized fuel which did not sustain combustion, Although
the tests conducted on Contract AF 04(611)-8516 indicated
the feasibility of the tests resulted in nonsustaining fuels.
The problem is a multifacet affair with simultaneous con-
sideration: of limitations placed on the pellet arid on the
matrix as-.having separate combustion characteristics
while the overall formulation must deliver maximum
performance.

(C) The conclusion reached from this and previous tests
indicate that ahighlyloaded AP fuel system can be developed
using aluminum rather than boron, but that simple pelletiza-
tion of AP will not produce a satisfactory boron-containing
fuel. The problem of formulating a boron-containing pel-
letized fuel'was relegated to laboratory optical bomb studies
previously discussed which indicated that sufficient pellet
separation can be achieved by coating pellets with fuel con-
stituents, thereby maintaining the most desirable formula-
tion, However, further motor testing of pelletized fuels
was limited to one 5. 0-in, motor test which sustained
combustion,

g. 5.0-in. Motor Test Program

(U) Sixty-one 5. 0-in. motor tests were conducted on this con-
tract with 36 involved in investigation of combustion charac-
teristics of fuels discussed in the previous section, The motor
configuration shown in figure 27 was used in five test series,
the first two of which were component development tests
described in the appendix of this report.

(U} Nine 5, 0-in, motor tests were conducted in the develop-

ment of the full-scale fuel grain. These tests are discussed in
the following section,
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2. FUEL GRAIN SHAPE DEVELOPMENT

(C} A hybrid fuel grain shape has been developed which will provide the
required fuel delivery rate in a short L./D ratio motor. The 18-in. fuel
grain shape shown infigure 32 uses sixactive fuel ports into which oxidizer
is sprayed. Each active port has seven inactive ''satellite' ports clustered
about it which do not burn until the web between each inactive port and the
active port is consumed. The successive burning of inactive ports results
in an essentially constant fuel flow rate with the fuel now being used. The
grain shape provides a cross-sectional loading fraction of 92% and a sliver
fraction of 6. 7%, both of which may be improved even further with some
modification. The multiple port fuel grain configuration overcomes the
design obstacles which are considered characteristic of hybrid rocket
motors and which result from regression rates which are relatively low
when compared to those of a solid rocket propellant,

(C) The fuel grain shape is calculated to deliver a fuel flow rate of 6 1b/sec
at boost thrust oxidizer flow rate, 1, 881b/sec/port, and 3 1b/sec at sustain
thrust oxidizer flow rate, 0. 38 1b/sec/port.

(U) The calculated fuel delivery rates and mixture ratios are shown in
figures 32 and 33 for the anticipated maximum durations. These calculated
data indicate that low fuel delivery rates will result in the first few seconds
of operation. However, the experimental data obtained infour 5. 0-in, motor
tests and two full-scale motor tests would indicate that higher initial fuel
flow rates are actually being delivered. Since the calculated low initial
fuel flow rates do not actually occur, the high initial O/F ratios shown in
figure 33 will also not occur. Since the O/F ratio curves are essentially
constant after 5 sec of boost thrust operation and after 10 sec of sustain
thrust operation, it can be concluded that essentially constant mixture
ratio can be maintained for any duty cycle.

(U) The differences in operating mixture ratios between boost and sustain
flow rates, illustrated in figure 33, were deliberately contrived to produce
improved mixture ratios over the anticipated burning times. For instance,
over short burning times (22 sec) at boost thrust, the average mixture ratio
is 2. 5. Sustain thrust operation is not anticipated until after some boost
period., Therefore, the mixture ratio is optimized for the last half of the
duty cycle at a value of approximately 2. 5,

(U} Once the actual fuel flow rates are determined in full-scale motor
tests, the oxidizer flow rates delivered by the primary and aft injectors
can be adjusted to produce any mean operating mixture. The devidtion in
actual mixture ratio will be approximately equal to the deviations indicated
by the curves of figure 33 after the first few seconds of operation.
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2. FUEL GRAIN SHAPE DEVELOPMENT

(C) A hybrid fuel grain shape has been developed which will provide the
required fuel delivery rate in a short L./D ratio motor. The 18-in. fuel
grain shape shown infigure 32 uses six active fuel ports into which oxidizer
is sprayed, Each active port has seven inactive '"satellite' ports clustered
about it which do not burn until the web between each inactive port and the
active port is consumed. The successive burning of inactive ports results
in an essentially constant fuel flow rate with the fuel now being used. The
grain shape provides a cross-sectional loading fraction of 92% and a sliver
fraction of 6. 7%, both of which may be improved even further with some
modification. The multiple port fuel grain configuration overcomes the
design obstacles which are considered characteristic of hybrid rocket
motors and which result from regression rates which are relatively low
when compared to those of a solid rocket propellant,

(C) The fuel grain shape is calculated todeliver a fuel flow rate of 6 1b/sec
. at boost thrust oxidizer flow rate, 1. 881b/sec/port, and 3 1b/sec at sustain
thrust oxidizer flow rate, 0. 38 lb/sec/port.

(U} The calculated fuel delivery rates and mixture ratios are shown in
figures 32 and 33 for the anticipated maximum durations. These calculated
data indicate that low fuel delivery rates will result in the first few seconds
of operation. However, the experimental data obtained in four 5. 0-in. motor
tests and two full-scale motor tests would indicate that higher initial fuel
flow rates are actually being delivered. Since the calculated low initial
fuel flow rates do not actually occur, the high initial O/F ratios shown in
figure 33 will also not occur. Since the O/F ratio curves are essentially
constant after 5 sec of boost thrust operation and after 10 sec of sustain
thrust operation, it can be concluded that essentially constant mixture
ratio can be maintained for any duty cycle.

(U) The differences in operating mixture ratiocs between boost and sustain
flow rates, illustrated in figure 33, were deliberately contrived to produce
improved mixture ratios over the anticipated burning times. For instance,
over short burning times (22 sec) at boost thrust, the average mixture ratio
is 2.5, Sustain thrust operation is not anticipated until after some boost
period., Therefore, the mixture ratio is optimized for the last half of the
duty cycle at a value of approximately 2. 5.

(U} Once the actual fuel flow rates are determined in full-scale motor
tests, the oxidizer flow rates delivered by the primary and aft injectors
can be adjusted to produce any mean operating mixture. The devidtion in
actual mixture ratio will be approximately equal to the deviations indicated
by the curves of figure 33 after the first few seconds of operation.
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Figure 31. (U) Cross Section of 18-in. Fuel Grain
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Figure 32. (U) Calculated Fuel Flow Rate
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BOOST OXIDIZER FLOW = 13.34 lb/sec
SUSTAIN.OXIDIZER FLOW =7.28 |b/sec

Figure 33, (U) Calculated Mixture Ratio
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a. Design
(U) Hybrid fuel grain design is a matter of matching the fuel
regression rate and fuel burning surface to deliver an essen-
tially constant fuel flow rate as a function of burning time. The
controlling factors in grain shape design are the relationships
between fuel regression rate, oxidizer flow rate, fuelgrainport
area, and combustion chamber pressure.

(U) Hybrid fuel flow rate can be expressed:

w£=prPbr, ‘ (1)

where:
w. = fuel flow rate, 1b/sec
p; = fuel density, 1b/in?
P, = fuel burning perimeter, in.
L = fuel grain length, in.

T regression rate, in./sec.

(M The burning surface is a function of the diameter of the
port which changes with time, and the regression rate is usually
a function of oxidizer mass flux [(Gg) = (oxidizer flow rate + fuel
port gross section, lb/sec-in.z)] and possibly of chamber
pressure,

(C) Extensive theoretical studies have beenconducted onother
progi‘ams in an attempt to theoretically predict the regression
rates of hybrid fuels using convective and radiative heat transfer
theory. However, it has been the experience of this program
and that of Contract AF 04(611)-8516 that the theory is not yet
sufficiently developed to handle fuel systems which incorporate
ingredients which augment fuel regression rate such as ammo-
nium perchlorate, THA, TAZ, and TFTA,

(U) Empirical relations have therefore been developed which
express the regression rate as a function oxidizer mass flux
and/or chamber pressure. Relations such as those below are
then assumed and the constants and exponents are experimentally
determined over the range of motor operating parameters.

CONFIDENTIAL
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(U) The assumed relations are:
T o= aGon )

where regression rate is considered to be a function of oxidizer
mass flux and: ‘

where regression rate is considered to be a function of chamber
pressure also. The mass flux, Gy, can be replaced in the equa-
tion by wivox/Ap which is the ratio of primary oxidizer flow to
fuel port area.

(U) The substitution of either equation 2 or 3 into equation 1
_will result in a
. W, = ap,L(w ) i
£ 7 2P Wox n
(A )
P

or ) !

; n Pb. m
' w, = ap.L(w_) P
f ox n
(A)
P

f c

‘

(U) In either case it is evident;that a constant fuel flow rate
with burning time will resultonly when the parameter Pb/(Ap)n
is constant. For example, if a cylindrical fuel port is used
with a fuel which can be characterized with an exponent (n)
equal to 0.5, a constant fuel flow rate with burning time is
obtained. :

(U) Since
Pb = 7D
and
2
: _ D
Ap =z ‘

(2)

(3)

;
< at
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then

bn = “D_ 0.5 = 2Am = constant
) )
P 4
The fuel port diameter, D, being the only variable with burning
time.

(U) Convective heat transfer tHeory predicts that the -exponent
(n) would be equal to approximately 0. 8. With a circular port
motor a regressive fuel flow rate would result, causing a con-
stantly increasing mixture ratio O/F. However, experimental
data with the type fuels under invesjcigafioﬁ on this contract in
which additives augment regression rate indicate that lower
exponents rcsult. The lower exponent indicates a regression
behavior which is less dependent on oxidizer flow and fuel port
area.

(U) Constant fuel flow rates can be obtained by conventional
solid motor design techniques if the exponent is zero (constant
regression rate) and a neutral star grain configuration is used.
If the exponent is 0. 5, a circular port can be used, and if the
exponent is between zero and 0.5, modified shapes can be used
to produce constant fuel flow rate.

(U) The grain design used in the 18-in. full-scale motor and
shown in figure 31 is designed to provide a constant fuel flow
rate using equation 3 with a fuel having an exponent (n} equal
to 0.4 and-an exponent (m)-equal to 0. 1. The curves of figure 34
show the parameter Pb/(Ai,)n for exponents of 0.4 and 0. 6.
The exponent n =:0..4 is used for calculations and it is the
initial low value of the parameter that results in the low calcu-
lated fuel flow rate of figure 32. The ¢urve of n=0. 6 is included
to show the reversal in the trend, The low value of the param-
eter for n = 0.4, however, is compensated by the higher actual
initial regression rate which has been observed in subscale and
full-scale tests. Since the minor differences do exist between
actual and predicted fuel flow rate, final modification of the fuel
grain shape must await full-scale motor testing. Thenaccurate
determination of fuel flow rate as a function of burning time can
be made and the number and location of ports and slots can be
adjusted to provide essentially constant fuel flow rate at both

- boost thrust and sustain oxidizer {low rates.
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Figure 34, (U) Fuel Port Parameter vs Web Consumed

b. Development

(U} The development of the fuel grain shape described above
evolved from12-in.-diameter motor studies conducted under Con-
tract AF 04(611)-8516. These studies and subscale motor studies
conducted under this contract are discussed in the following
paragraphs to provide the background for the development of

a fuel grain suitable for tactical missile propulsion systems.

(U) Hybrid fuel regression rates are characteristically low,
Therefore, longer grain lengths are required for higher thrust
single port motor designs. Typically, a single port fuel grain
for a 5,000-1b thrust motor would be approximately 80 to 120in.
in length depending on the regression rate of the fuel and the
optimum propellant mixture ratio O/F.

(C) Twelve-in. motor design studies conducted under Con-
tract AF 04(611)-8516 resulted in the development and testing
of two multiple-port fuel grain shapes which greatly reduced
the required length of a 5, 000-1b thrust motor. The fuel grain
shapes are a three-port cartwheel design and a hubbed nine-port
cartwheel grain shape, as shown in figure 35. The resultant
reduction in motor L/D is shown in table XIII in which the
benefit of multiple port fuel grain shapes is clearly indicated.
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SLIVER 6.3%

NOTE: EIGHT SMALL HOLES INCLUDED
TO REDUCE SLIVER LOSS

SUIVER 8.5%
LOADING 0.787
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THREE-PORT CARTWHEEL GRAIN DESIGN
R-60881

Figure 35. (U) 12-in. Hybrid Motor Fuel Grain Shapes
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TABLE XIII

(U) LENGTH-TO-DIAMETER RATIO
OF TYPICAL 5,000-1b THRUST HYBRID MOTORS

{Burning Time — 20 sec)

i Motor Length  Motor Diameter

Grain Shape Motor L/D in, in,
! Cylindrical single port 7.8 78 io
: Three-port cartwheel ’ 2.9 36 12,5

Nine-port cartwheel 1.6 ... 25 15,3

(C) Each of these fuel grains was successfully tested twice
under this contract and demonstrated efficient and predictable
fuel utilization. These grain shapes had cross-sectional load-
ing fractions of 89%, 80%, and sliver fractions of 8. 5% and 6. 3%,
i respectively, as compared to the grain shape which was devel-
oped under this contract with a loading fraction of 92% and a
sliver of 6. 7%.

(U)" A high loading fraction is desirable for maximum system
performance, but loading fraction is limited by the smallest
port size which is usable. In addition, extremely small port
sizes increase the sliver fraction beyond practical limits and
‘ resuit in poor fuel utilization. Thelarge sliver fractions result
from the long radii arcs produced from burning lar:e propellant
web thicknesses. '

(C) Based on the success of the four tests of multiple-port
grain shapes tested under Contract AF 04(611)-8516, design studies
were conducted during this program which incerporated the concept
of using inactive ports in a multiple-port design to promote fuel
regression in the direction of corners which normally would
result in high fuel sliver volume. The study resulted in the
grain shape now being used which permits an extremely high
loading fraction and a sliver fraction which can be easily

i improved upon.

{C) In order to determine if slots of smaller cross-sectional
area could be used rather than the cylindrical inactive ports,
a series of four tests were conducted with 5.0-in. motors

X
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with the grain shape, as shown in figure 36, The tests show
that the slots produce predictable regression behavior if one
assumes a-uniform regression rate over the burning perimeter.
The results. indicate that even further reduction in sliver frac-
tioh can be accormplished by using slots in the fuel grain corners
and that a.slight increase in the loading fraction can be obtained
by substituting slots for the cylindrical inactive ports.

(C) Four more 5.0-in. motor tests {table XIV) were conducted
using the selected fuel sys{:em (30% TFTA, 5% boron, 30% AR,
and 35% R-binder) in a grain configuration similar to one major
port of the full-scale motor. The fuel grains are shown before
test {figure 37) and after test-(figures 38 through 41). Two tests
were conducted at the boost thrust oxidizer flow rate and cham-
ber pressure (1, 000 psi), and two were conducted at sustain-
thrust oxidizer flow rate and chamber pressure (500 psi).

(C) ~ The test results summarized in table XIV indicate that
high'regrgssion rates are obtained initially in contrast to the
analyticaily anticipated low rates,

TABLE XIV

(U) SUMMARY OF 5. 0-in. MOTOR TESTS
CONDUCTED IN GRAIN DEVELOPMENT PROGRAM

Series V
. . Average
Oxidizer Average Fuel
Flow Chamber Regression Flow
Test  Thrust Rate . Pressure Duration Rate Rate
No.. Level lb/sec psia sec in. /sec 1b/sec
9 Boost ~1.38 1,050 9.0 0. 098 0.59
i0 Sustain 0. 38 ' 570 17.0 0. 050 0. 30
i1 Sustain 0. 38 : 590 9.8 0. 066 0. 39
{2 Boost  1.88 1,050 4.5 0.14 0.97%

% Burning on outside diameter of fuel grain resulted in high indicated flow rate.
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Figure 37. (U) 5.0-in. Subscale Fuel Grain Before Test

Figure 38, (U) 5. Oﬂ-ixg,. Subscale Fuel Grain After Test {H-17-A-9)
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Figure 40. (U) 5. 0-in. Subscale Fuel Grain After Test (H-17-A-11)
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Figure 41. (U) 5. 0-in. Subscale Fuel Grain After Test (H-17-A-12)

(C) High initial flow rates have been observed in other
tests conducted under Contract AF 04{611)-8516 in which
slightly pressure sensitive fuels were being evaluated.
Similarly high regression rates were observed with fuels
containing THA and TAZ when fuel port diameters were
less than 1. 5 in, in diameter. When port diameters exceed
1.5 in., either initially or as a result of burning during
the initial few seconds of the test, the regression behavior
conformed to an empirical relation similar to that being
used on this program. The high initial regression rate
is not gndesirable, since it compensates for the low cal-
culated initial fuel flow rates.

(C}) The regression behavior of the fuel grains using the
inactive or ''satellite'' ports also appears to be predictable
from the photos of the four fuel grains in figures 38 through 41.
Further evidence of predictable fuel regression behavior is
available from the limited testing accomplished with the full-
scale motor,
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(C) The fuel of full-scale motor No. 003 was fired for 15 sec

at sustain thrust level and burned essentially as predicted.
The grain shown after test in figure 42 indicates that the
fuel regression behavior was progressing as predicted. The
fuel formulation used in this test was not that which was used
to calculate the fuel flow rates shown previously in figure 32,
However, the fuel contained similar basic ingredients and
differed in regression rate by less than 15%. The differences
are not sufficient to produce different overall regression
behavior characteristics., The photo of the grain, shown in
figure 43, indicates that uniform regression behaviors are
obtainable from the fuel grain design. The results of the test
of motor No. 007 conducted at boost thrust for 5.0 sec cor-
roborate these indications. The fuel grain, shown infigures 44
and 45, employed the selected fuel system for which fuel
regressionbehavior was observedinthe 5, 0-in. tests described
above. Measurement of the fuel ports after the test indicate
that the behavior is similar to that of the subscale tests, in
other words, the actual regression behavior produces an
initially higher fuel flow rate than the calculated fuel flow
rates.

(U) Although the fuel grain design lacks complete verifica-
tion in full-scale motors, it can be concluded from the tests
already conducted that predictable regression behavior is
obtainable for durations up to 9 sec at ‘boost thrust level
and 17 sec at sustain thrust.

.(U) Past experience on Contract AF 04(611)-8516 indicates
that regression behavior becomes more predictable and less
sensitive to peculiarities of the grain shape as the fuel port
opens. Therefore, no difficulties are forseen in obtaining the
desired.-characteristics from the full-scale fuel grain in longer
duration firings.
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Figure 42. (U) Fuel Grain of Motor 003 After Test
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Figure 45. (U) Fuel Grain of Motor 007 After Test
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SECTION V

THRUST CHAMBER DEVELOPMENT

(C) An 18-in. -diameter hybrid thrust chamber has been developed and
fired in three full-scale motor tests. with durations up to 15 sec.. The TCA
is designed for 1,000 psi chamber pressure during boost thrustand 500 psi
during sustain thrust operation. The TCA when completely developed will
be capable of delivering approximately 200, 000 lb-sec of impulse at two
thrust levels, as follows: 5,000 1b during boost, and 2, 500 1b during sus-
tain thrust operation. The TCA will be capable of delivering the impulse
at boost thrust, sustain thrust or any combination of boost-coast-~sustain-
coast-sustain-type thrusting modes.

(U) Development testing has been conducted on all TCA components,
including thrust control system, injectors, and motor case components.
The results of these tests indicate that high energy hybrid propulsion sys-
tems may be feasible for use in advanced tactical missiles.

(C) The TCA (shown in figure 46) has been tested successfully for dura-
tions up to 15 sec. A thrust control system has been designed and fabri-
cated which consists of a lightweight dual element solenoid valve, six dual
flow primary injectors, and a fixed area aft injector. The injectors have
been successfully tested in full-scale and subscale motors. .Thelightweight
thrust control valve has been thoroughly checked in bench tests and now
awaits testing in full-scale motor tests.

(C) A multiple (six) port fuel grain shape previously describedhas been
designed- and tested in full-scale and subscale tests for durations up to

17 sec. The fuel grain shape provides a cross-sectional loading of 92%
while permitting almost complete utilization of fuel. When used with the
fuels under development and the oxidizer flow control system, the fuel
grain shape will produce an essentially ccnstant mixture ratio with respect
to burning time at both thrust levels.

(U) Limited development testing of the full-scale motors is completed.
A test of the first version (designated Mark I) of the TCA. indicated that
modifications were required of the aft closure insulation. The closure
was subsequently redesigned twice to obtain a suitable noncharring abla-
tive ait closure. A nylon-phenolic aft closure assembly was developed for
use on the Mark II motor which, in a full-scale test, was demonstrated to
have to the desirable noncharring ablative characteristics.
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1. THRUST CONTROL SYSTEM

(C) A simplé thrust control system has been devised which, with one
dual-element solenoid valve, can provide dual thrust operation as well as
on-off control. The system shown schematically in figure 47 includes the
dual element valve, six dual-manifold injectors, and a single fixed-area
aft injector. ’

(C) During sustain thrust operation, oxidizer is supplied to the motor by
the sustain thrust valve element while both valve elements supply oxidizer
during boost thrust operation. Oxidizer is supplied to the dual element
valve through a single feed line at a pressure of 1, 100 psi.

(UY Since boost thrust operating chamber pressure is {, 000 psi and sus-
tain thrust operating pressure is 500 psi, system pressure differentials of
100 psi at boost thrust and 600 psi at sustain thrust are available to con-

" trol oxidizer flow through the injectors. All of the injectors are of the fixed-

area orifice type. Therefore, as a result of changes in operating chamber
pressure, the flow rates in the aft injector and sustain ports of the primary
injector will change in thé ratio of (600/100)4, or 2.45, as thrust changes
are made from 5,000 to 2,500 1b. This resultant increase in flow rate at
lower thrust levels is easily accommodated by the nonlinear relationship
between fuel and oxidizer flow rates.

(U) The distribution of oxidizer between primary and aft injectors at the
boost and sustain thrust levels is a function of the sensitivity of fueldeliv-~
ery rate to primary oxidizer flow rates and combustion chamber pressure,
Experience with fuel of the type being evaluated has shown that it can be
characterized reasonably well within the operating limits by an empirical
regression rate equation of the.form:

s m . n
r-a.‘PcGo ’

where

the operating limits are: P, less than 1, 000 psi
G, between 0.01 and 2.0 1b/sec-in.2
and-

e
i

regression rate, in. /sec

a = proportionality constant
P, = combustion chamber pressure, psi
G, = oxidizer mass flux (lb/sec-in.2) = Wop/Ap
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Wop = primary oxidizer flow rate, lb/sec
Ap = fuel grain port area, in.2
m = pressure exponent
n = oxidizer mass flux exponent,

with the exceptioh‘ that for very small fuel port diameters, higher thanpre-
dicted regression rates occur. Experience with the fuel being investigated
on this contract indicates that the value of the exponent, n, in the above
equation is approximately 0.4 and m is approximately 0. 1. Therefore,
.the ratio Qf'bbost-—thrust primary oxidizer flow rate to sustain thrust pri-
mary flow rate required is 5:1 in order to achieve a boost tosustainthrust
ratio of 2:1 with a constant mixture ratio.

(U) Since the relationship between the fuel flow rate and primary oxi-
dizer flow rate is nonlinear, supplemental aft injection of oxidizer is needed
in order to maintain a constant mixture ratio. However, by adjusting the
aft flow rate at full thrust, the ratio of boost thrust to sustain thrust aft
oxidizer flow rate can be adjusted over a very wide range.

(U) Because of the minor pressure sensitive regression of the fuel
used, the latitude of choice of aft oxidizer flow ratios is not easily
illustrated. If for example a system is used having no pressure sensitive
regression behavior and an oxidizer mass flux exponent of 0.5, the lati-
tude of choice given the designer can be clearly illustrated. Figure 48
shows the primary and aft oxidizer flow rates required ofatypical 5, 000-1b
thrust hybrid motor as it is throttled over a continuous spectrum of thrust
levels. Note that while the primary oxidizer flow rate is a linear loga-
rithmic function, the aft flow rate requirement is generally inverse in going
from 2,500-1b thrust to 5,000-1b thrust. Therefore, by judicious selec-
tion, the ratio of aft oxidizer flow rate at sustain thrust to that at boost
thrust can be tailored to fit the ratio (2. 45) provided by the system pres-
sure differential change.

(U) A similar change in flow rate results in the sustain thrust orifices of
the primary injector as the chamber pressure varies with thrust, but this
can be accommodated by the oxidizer flow through the boost thrust valve.

(C) Parametric studies have been completed which determine the oxi-
dizer {low distribution for typical combinations of fuel system pressure
exponents and oxidizer mass flux regression rate exponents. Figure 49
gives the results of this study in oxidizer flow rates reqnrired for fuels of
various characteristics. Table XV gives the oxidizer distribution for only
one case which anticipates the exponernts m and n tobe 0.1 and 0.4,
respectively. Although the final flow distribution was modified when
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Figure 49. (U) Primary Oxidizer-Throttling Ratio
Required for 2:1 Pressure-Throttling Ratio
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characterizatior of the selected fuel system was completed, the flow rates
given below :are considered to be representative of the final configuration
oxidizer flow:rate requirements, using CIFS. (C)

TABLE XV
(U) OXIDIZER FLOW DISTRIBUTION

N
m = 0.1, n = 0.4, mixture ratio = 2.5 (O/F)

Boost Thrust Sustain Thrust
Injector ) lb/sec 1b/sec
Primary
Boost orifice "10. 4 0
Sustain orifice 0.99 2.42
Aft 1. 68 4.12
% Total 13.07 6. 54

(U)  Actual oxidizer flow rates used in full-scale motor tests using C1F
were established after subscale motor tests were conductedwiththe selected
fuel. Slightly modified regression behavior resulted from minor differ-
ences in physical properties of the fuel. Therefore, slight modifications
in oxidizer flow were required.

(U} Experience gained on this and-on previous hybrid motor development
contracts indicates that with the fuels being investigated and the thrustcon-
trol system discussed here, dual thrust operation can be achieved while
maintaining essentially constant mixture ratio at both thrust levels.

a. Control Valve Development

(U) 'To meet the operating requirements of dual thrust and
random on-off duty cycles, a dual element thrust control valve,
shown in figure 50, has been developed which, whenused inthe
selected thrust control system, will provide both on-off and
dual thrust operation from only two 28 v electrical signals.

(U) This valve, which is shown schematically in figure 51,

is predominantly aluminum and consists of a common feed line,
two pilot solenoids, and two main poppet valves which control
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oxidizer flow through two discharge manifolds, a boost thrust
oxidizer manifold, and a sustain thrust oxidizer manifold.

(U} The valve mounts directly to the forward closure of
the Mark II full-scale motor, thus providing a short over-
all length -TCA. It is activated by application of a 28-vdc
signal (0.9 amp) to the solenoid which causes the sole-
noid armature to push the pilot poppet to the opposite seat.
Chamber A (see figure 51) is then vented to the valve discharge.
The feed system pressure applied to chamber B causes aforce
unbalance on the poppet, thereby opening the main poppet.
Removal of the electrical source causes the pilot poppet to
return to the closed position. The feed system pressure is
applied again to chamber A, causing the main poppetto close.

(U} The valve weighs only 5 lb and was designed to be ame-~
nable with low-cost mass production. No seals are used on

the main poppet, and the valve seat is machined into the alumi-
num valve body. With proper handling and avoidance of foreign
particles, this seat should have a service life of 50 cycles mini-
mum and can be refurbished by subsequent lapping. Each pilot-
poppet solenoid is removable without otherwise disturbing the
valve, Each contains one dynamic seal which permits the use
of small low-current solenoids and avoids the necessity of expen-

sive bellows sealed poppets, as normally requiredfor use with
fluorinated oxidizers.

{U) “The pilot poppet seal is a spring-loaded teflon packing
that sells under a variety cof trade names. Although teflon is
not considered to be compatible with fluorinated oxidizers, it
has been iised with consistently satisfactory results in situa-
tions where the seal operates in a limited duty cycle and is
reémoved from high-velocity oxidizer flow.

(U) Cycling tests conducted by the manufacturer indicate that
the valve operates with response times of approximately 100 msec,
and at pressures up to 1,500 psi.

{U Water flow calibration tests, hydrostatic tests, and opera-
y P

tional tests have been.made with the valve, and the valve is now
ready for installation and testing on full-sealg motors.
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b. Injec.tc;i' Development

(C) A dual manifold poppet injector has been designed,
fabricated, and successfully tested for use with the selected
thrust control system in delivering oxidizer throughout a dual
thrust on~-off duty cycle. The primary oxidizer injector shown
in figure 53 delivers oxidizer at two flow rates and shuts off
the oxidizer flow at the injector when flow is terminated upstream.
The injector consists of an injector body and a spring-loaded
poppet, as shown schematically in figure 53. The poppet con-
tains a {low passage and fixed orifices which control oxidizer
during sustain thrust operation. The injector body contains an
annular flow passage and orifice which controls additional oxi-
dizer flow used during boost thrust operation.

(C) The spring-loaded poppet is designed to open under oxi-
dizer pressure from the sustain thrust valve manifold. The
travel of the poppet is limited in travel by an adjustable nut,
which merely prevents poppet oscillation. The external sur-
face, on which tlie poppet seats, serves to direct the oxidizer
flow axially into the motor. The injector spray pattern at
boost and sustain flow rates is showninfigures 54 and 55 as
the injector is undergoing calibration.

{(C) Since the poppet is operated by oxidizer pressure, ter-
mination of flow upstream will cause it to close, thereby pre-
venting backflow and possible contamination of the feed system
with fuel-rich vapors. Contamination of the oxidizer feed sys-
tem by residual fuel vapors could, on restarting, causeareac-
tion between contaminants and oxidizers, resulting in damage
to the injectors.

(U) The dual manifold injector has been successfully tested
in four 5. 0-in. subscale motor tests in which full-scale motor
fuel-grain-port configuration was accurately simulated. Two
tests were conducted at sustain thrust oxidizer flow rates
(0. 38 1b/sec) and chamber pressure (500 psi)forupto 17-sec

duration. Two tests were conducted at boost thrust oxidizer

flow rate (1. 88 1b/sec) and chamber pressure (1, 000 psi) for
up to 9.0-sec duration. The injector shown in figures 56 and
57, with condensed fuel deposits on the face, is typical ofinjec-
tors after motor shutdown. Injectors in similar conditionhave
been restarted without injector damage. The uncontaminated
internal surface of the poppet illustrates the ability of the poppet

-
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Figure 53. (U) Dual-Manifold Poppet injector
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Figure 54. (U) High Flow Rate Dual-Manifold Injector Calibration

Figure 55. (U) Low Flow Rate Dual-Manifold Injector Calibration
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Figure 56. (U) Poppet Injector-Poppet Removed
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Figure 57. (U) Poppet Injector with Poppet |
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to limit the contamination on shutdown to external surfaces.
On restarting, the ccntaminated external surfaces of the injec- ¢
tors arc flushed by the oxidizer without damage to the metal '
surface.

(U} To complete the complement of injectors requiredfor the
" selected thrust control scheme, a simple poppet-type aft
injector, shown in figure 58, was developed for the full-scale
‘motor. The aft injector was successfully tested ina full-scale
motor test of i15-sec duration.

(C) The aft inject.r operates on oxidizer fluid pressure, but
in this case it also acts as a fixed-area orifice. Flow rate varia-
tion through the aft injector is therefore accomplished only by
changes in the pressuredifferential. Theaftinjector is designed
to deliver 120° included angle radial spray pattern to deliver
oxidizer into the motor plenum chamber from its central loca-
tion.  Flow rate changes required for dual thrust operationare
accomplished by changes in injector differential pressure.

(U) Prior to the development of the dual manifold poppet
injector and poppet-type aft injector, an injector development
program was ¢onducted to evaluate various injector concepts
which had potential application in a dual-thrust hybrid propul-
sion system. Injector requirements included the capability of
delivering two oxidizer flow rates for the boost and sustain
thrust levels at both primary and aft injector locations. The
spray pattern should have 2 minimum of radial spray momen-
tum in order to minimize splashblock requirements and effect
uniform fuel regression behavior. In addition, the injectors
should be capable of ‘multiple motor réstarts after short coast
periods.

{U) Several injector designs were evaluated which had one or
more of the desirable features of a dual-thrust motor injector.
In addition, a concept which will allow a single primary injec-
tor to be used with multiple port fuel grains was evaluated.

(U) Although they are not used in the full-scale motor, the
injectors.tested contributed to the evolution of the dual mani-
fold and aft poppet injectors used in the full-scale motor. A
description of each injector tested is therefore included inthis
report;
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c. Impinging Streams Injector

(C) The impinging streams injector, shown in figure 59,

was designed to provide an axial oxidizer flow distribution and
thereby eliminate the requirement of shielding the injector with
graphite and the necessity for including a low burning rate splash-
block in the motor designs, in order to obtain uniform fuel regres-
sion behavior. Both shielding and splashblock have been required
previously to obtain an axial spray pattern.

(C) The injector is regeneratively cooled by flow passages
just behind the face. The face is anodized to provide insula-
tion between the combustion zone and the injector.

(C) The impinging streams injector was tested in 5, C-in.
motor hardware for 10-sec durations at a chamber pressuvre
of 300 psia. The oxidizer flow rate was 2.0 lb/sec with an
injector pressure drop of 50 psi. The injector did not experi-
ence any damage. Further development with this injector was

Figure 59. (U) Multiple Impinging Streams Injector
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discontinued, as dual-thrust injectors described in the follow-
ing paragraphs can better accomplish the injector requirements.
However, the development of this injector has provided impor-
tant data on regenerative cooling and anodized shielding.

d. Dual-Orifice, Hollow-Cone Injector

{C) The dual -orifice, hollow-cone injector, shown infigure 60,
provides two oxidizer flow rates at a fixed pressure differential.
Two conceatric hollow-cone injector elements provide oxidizer
flow through both the inner orifice and outer annulus during
boost thrust levels and through the inner orifice during the sus-
taining thrust levels. The injector was used successfully in a
test of 10~sec duration, which included 5 sec at 150 psi with

an oxidizer flow rate of 0.5 1b/sec and 5 sec at 500 psi withan
oxidizer flow rate of 2.0 lb/sec. This injector design could

be used in full-scale motor development after modifications

are made to provide an axial oxidizer-spray pattern and shut-
off capability.

Figure 60. (U) Dual-Orifice, Hollow-Cone Injector
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discontinued, as dual-thrust injectors described in the follow-
ing paragraphs can better accomplish the injector requirements.
However, the development of this injector has provided impor-
tant data on regenerative cooling and anodized shielding.

d. Dual-Orifice, Hollow-Cone Injector

(C) The dual -orifice, hollow-cone injector, showninfigure 60,
provides two oxidizer flow rates at a fixed pressure differential.
Two concentric hollow-cone injector elements provide oxidizer
flow through both the inner orifice and outer annulus during
boost thrust levels and through the inner orifice during the sus-
taining thrust levels. The injector was used successfully in a
test of 10-sec duration, which included 5 sec at 150 psi with

an oxidizer flow rate of 0.5 lb/sec and 5 sec at 500 psi withan
oxidizer flow rate of 2.0 lb/sec. This injector design could

be used in full-scale motor development after modifications

are made to provide an axial oxidizer-spray pattern and shut-
off capability.

Figure 60. (U) Dual-Orifice, Hollow-Cone Injector
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e. Poppet Injector

(C) Conventional injectors may be subject to fuel vapor back-
ilow after motor shutdown which could cause injector failure
during an attempted restart. Two poppet-injector concepts
were developed and successfully tested which provide injector-
face shutoif of oxidizer and eliminate possible injector-failure
problems during motor restart. The injector showninfigure 61
is a simple spring-loaded poppet which opens to the calibrated
stop position under fluid pressure. When oxidizer flow is ter-
minated by upstream control valves, the poppet injector closes,
preventing fuel vapor backflow, trapping oxidizer in the feed
lines, and producing immediate thrust termination. Axial flow
is achieved by flow deflectors built into the injector.

(U) The poppet injector was successfully tested in a 10-sec
duration motor firing at an oxidizer flow rate of 2.0 lb/sec and
a chamber pressure of 300 psi.

o190 0000, 8 ol :o:o:.:o:ofofoféof
DOOOOOOTITITIOTIITTIX X I IINSOOCOO
’:?o?o,?ufofo?ofo?Qfofofofo?ofofo'o:a:o’o * $2e%ede!
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Figure 61. (U) Poppet Injector

111

CONFIDENTIAL

R-50589

RNy S S PTOT




f. Orificed-Poppet Injector

(U) A second poppet injector, shown in figure 62, was tested
which incorporates orifices to control oxidizer flow rate. The
injector is opened by fluid pressure to a position which allows
free oxidizer flow from the orifices. The flow is thendirected
axially by self-cooled deflecting surfaces. Phenolic insulating
material is installed on the injector poppet face to provide
shielding. The injector has been tested twice at an oxidizer
flow rate of 2.0 lb/sec.

g. Single-Point Primary Injection

(C) Two 5.0~-in. motor tests were conducted to evaluate the
feasibility of using a single injector to supply oxidizer tomultiple-
port fuel grains via a common head-end plenum. Oxidizer
(C1F3) was supplied at a flow rate of 1. 18 1b/sec through a
single spring-loaded poppet injector to a three-spoke fuel grain
shape. A plenum was formed by the head-end insulation and
fuel grain insulating shield (see figure 63). A high regression

@

6%0% % % "
.0.07070° 0. 0.0707¢

R-50590

Figure 62. (U) Orificed-Poppet Injector
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Figure 63. (U) Motor Configuration, Single-Port Injection Test
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rate resulted at the head end of the motor during the first5-sec

test. The high regression rate was caused by flow recircula-

tion created when the insulating shield eroded at a lower rate v
than the fuel grain. The second test was made with a 1/4-in, -
thick insulation which eroded at a rate equal to that of the fuel.
Uniform fuel regression was obtained and the fuel was com-
pletely consumed, except for the anticipated sliver (see fig-
ures 64 and 65). These tests indicate that the concept is
feasible and could greatly simplify oxidizer injection. Nofur-
ther work was conducted, since the development work required
would not be possible within the present contract period. (C)

2. THRUST CHAMBER

(U)  An 18-in, -diameter full-scale hybrid thrust chamber was designed,
fabricated, and tested during this program. Seven motor assemblies,
including three versions of the thrust chamber, were fabricated and three
were tested for durations up to 15 sec.

Y <
& A

i
4
.
]
)
:
|

Figure 64. (U) 5.0-in. Three-Port Fuel Grain
After Test No. {

114

CONFIDENTIAL

i




L TP . [P e e N - [, -

R-51157

Figure 65. (U) 5.0-in. Three-Port Fuel Grain
After Test No. 2

(C) The thrust chamber is designed to operate at a chamber pressure of
1, 000 psi at boost thrust and 500 psi at sustain thrust. The chamber con-~
tains approximately 240 lb of fuel. It incorporates six dual flow primary

injectors located in the forward closure and an aft injector attachedto the

forward closure by a feed tube which passes through the center of the fuel
grain. The injector sprays oxidizer into a plenum chamber formedby the
aft surface of the fuel grain, the aft closure, andaburied nozzle. The ini-
tial version of the motor, designated Mark I, is shown in figure 66. Sub-
sequent designs designated Mark I-A, also shown in figure 66 and Mark II
shown in figure 67, incorporated changes in the aft closure insulation and
forward closure design.

(U) Nine motors were fabricated in the three configurations. Table XVI
lists the motors and their present status.

(C) The Mark I configuration was designed and fabricated using prelimi-
nary materials data. Subsequent tests indicated a need for materials and
design changes as outlined in the following sections of this report. These
changes included changes in aft closure material to reduce heat retention
and rubber case liners to prevent internal gas leaks.” The modifications
accomplished on existing Mark I hardware produced the Mark I-A configu-
ration. Meanwhile, thermal analyses initiated at the start of the program

115

CONFIDENTIAL |

M

wd




A

AL

| S LIT

CONFIDEN

TABLE XVI
(U) FULL-SCALE THRUST CHAMBERS

Motor No. Configuration Status '
001 Mark Tested; resulted in motor case failire
002 Mark I Hydrotested to failure
003 Mark [ Tested at sustain thrust for {5-sec duration
004 Mark I-A Motor assembled; fuel porous; motor being

held pending disposition

005 Mark I-A ~Motor assembled; fuel porous; motor being
: held pending disposition

006 Mark I-A Motor assembled; fuel cast, case leak,
awaiting disposition

007 Mark II Motor tested 5.0 sec; demonstrated boost
and sustain thrust operation .

008 Mark II Fabricated — not assembled

009 Mark II Fabricated — not assembled

was completed in the light of the new data, indicating that noncharringabla-
tive materials were needed. These analyses resulted in the Mark ITmotor
configuration, which include a noncharring nylon phenolic aft closure insula-
tion which has been daetermined to be essential for rapid combustion ter-
mination, a new nozzle, and a forward closure with attached thrust control
valve. '

(C) The motor is assembled by installing prefabricated forward and aft
closure assemblies on an assembly mandrel over which afilament wound
case is applied. Filament wrapping of motor cases provides a means of
preducing aflightweigfht flight configuration test motor which is essential
to ohtain precise motor weight data and to determine fuel flow accurately.
The motor is assembled and wrapped with casting mandrels made of Woods
metal installed in the completed motor assembly. To exiract the casting
mandrels after the fuel is cast and cured, the curing-oven temperature is
inl:r:;:ased to the mielting temperature of the Woods metal (160° F), and the
mandrels are melted out.
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(C) The motor uses a centrally located aft injector, and a plenum created
by the buried nozzle to produce efficient mixing and obtain high periorm-
ance. These previously tested techniques to obtain high performance levels,
were tested on Contract AF 04(611)-8516 using the motor configuration
shown in figure 68 and on Contract NAS 7-311 using the configuration shown
in figure 69.

(C}  The first motor used a plenum chamber created by a simulated buried
nozzle to change abruptly the direction of flow of the coaxial fuel and oxi-
dizer streams, thereby inducing mixing in the plenum sufficientlytodeliver
a specific impulse of 91% of theoretical.

(C) The second motor used a centrally located, radial spray aft injector
to produce the necessary mixing in a small, aft plenum chamber. Per-
formance levels of approximately 94% of theoretical specific impulse have
been achieved using this configuration.

3. MARK I MOTOR

(C) The Mark I thrust chamber design incorporated forward and aft clo-
sures fabricated of aluminum and insulated with buna-N modified carbon
cloth-phenolic and asbestos-phenolic, insulation. Because of its resistance
to the high temperature environment, the carbon cloth-phenolic material
was used in the plenum chamber where the chamber wall is exposedto the
combustion gases. However, the relatively high conductivity of the carbon
cloth-phenolic. material requires that it be backed by a reinforcing of an
insulating layér of asbestos-phenolic material. The Mark I aft closure is
shown in figure 70,

{C) The nozzle assembly, also shown in figure 70, uses bothinsulating
materials, and, in addition, uses an ATJ graphite-throat insert. The
Mark I motor (No. 003) was successfully fired at nominal sustain thrust
chamber pressure for a duration of 15 sec. .The purpose of the test was
to provide fuel flow rate, combustion data, and preliminary materials
evaluation data for subsequent Mark II aft closure and nozzle designs.

(C) . Scheduled:tests of the same motor were canceled when a postfire
inspection of the aft closure revealed surface blistering of unknown.depth
(shown in figure 71) into the carbon phenolic material. The material was
originally selected because of its high resistance to erosion, as determined
by subscale tests described in appendix I of this report.

(C) The blistering resulted not from erosion but from subsurface out-

gassing of the volatile materials in the closure. Blistering anddelamina-
tion was due to the parallel-to-surface orientation of the carbon cloth
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Figure 70,

(U) Mark I Configuration Aft Closure and Nozzle
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Figure 71. (U) Mark I Aft Closure
Configuration After Test
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which failed to allow passage of the gaseous resin products The char
depthinthe aft closure is uniform, as shown in figure 72, and varies from
0.10 in. to 0 25 in.

(C) Subsequent subscale motor testing has indicated the necessity of using
noncharring ablative materials in the aft closure to facilitate positive motor
shutdown characteristics.

(C) The carbon phenolic used in the Mark I aft closure will char and store
large amounts of heat during the firing, reradiating it to the fuel grain after
shutdown. This property, together with its high thermal conductivity,
caused the carbon phenolic to be removed from the design. Data available
from tests conducted on NAS 7-311 indicated that nylon phenolic and short
fiber magnesia phenolics exhibited uniform ablation and produced a very
thin char. Based on this material test data, nylon phenolic was chosen for
the aft closure insulation.

(C) A modification to the Mark I motor aft closure insulation was made
using a nylon-phenolic/silica-phenolic composite structure designed to
minimize inside and outside surface temperature efficiently. The aftclo-
sure, shown in figure 73, used nylon-phenolic rosette layup on silica-
phenolic backing. Poor bonding resulted at the interface, and the composite
design was replaced by an all nylon-phenolic design in the Mark II motor.

(C) The test of motor No. 003 also provided preliminary data on the
nozzle design. Erosion of the nozzle throat insert, shown in figure 73, was
negligible. The loss of the liner in the lightweight nozzle skirt is the result
of using a thin tapewrapped liner of highly conductive material. The skirt
liner charred through rapidly, greatly diminishing its mechanical integi‘ity,
and subsequently failed under the shear forces of the rocket exhaust. The
high erosion at the nozzle entrance was particularly noticeable onthe glass-
phenolic backup to the ATJ throat section (see arrow in figure 74). Note
that the heat loads on the submerged portion of the nozzle have completely
charred the entrance area, as can be noted from the delamination in this
area.

(C) Heavier charring resulted on the outer surface of the nozzle within
the aft closure, where char depths reached 0.80 in. A higher heat loadis
expected in this area, but it should te noted that the orientation of the car-~
bon phenolic is changed at the base of the nozzle to perpendicular to the
surface. Material properties data indicate that the thermal conductivity
along the direction of the plys is double the value normal to the ply direc-
tion. This can account for a majority of the difference at the base of the
nozzle. The free-standing nozzle entrance section has, in additionto the
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Figure 74,

(U) Mark I Configuration Nozzle After Test
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change in ply direction, a significant heat load imposed by the graphite
throat insert. It was apparent from the results of motor No. 003 that
in order to perform a duty cycle with repeated coast periods, a changein
material and design of the aft closure and nozzle was required.

(U) Armed with preliminary materials data from motor No. 003, sub-
scale tests conducted on this contract, and data obtained from Contract

No. NAS 7-311, a thermal analysis was conducted on aft closure andnozzle
assemblies.

(C) The analysis used the Mark II motor design in which nylon phenolic
material of increased thickness was used for the aft closure and the graph-
ite throat insert was removed from the nozzle. The material chosen for
the nozzle throat was the graphite cloth '""hi-char' phenolic combination,
which performed very satisfactorily in material tests discussed in appen-
dix I of this report. The material forms a dense char layer which exhibits
superior erosion resistance and has exhibited.no tendencies toward surface
spalling to date.

(U) By incorporating a graphite-phenolic throat in the Mark II nozzle,
the transpiration cooling effect obtained from the effluxing resin products
can be used to minimize the detrimental thermal soak effects so evident
with heat sink-type throats. Thermal analyses were made on several
nozzle designs to evaluate their ability to withstand the repeated heat soak
periods characteristic of the duty cycles required. A critical problem is
the submerged portion of the nozzle, which receives severe heat loads on
both the outside and inside surfaces. The design philosophy was to employ
a rapid ablator to the outside of the nozzle to minimize heat input from the
plenum, while the inside material (nozzle throat) was dictated by erosion
resistance. Unfortunately, this results in a highly conductive throatinsert.
For the purpose of analysis, nylon phenolic was used as the outer heat
shield on the Mark II nozzle. Further study disclosed that anozzle failure
might conceivably occur due to outgassing at its interface with the graph-
ite-phenolic throat insert. A short-fiber magnesia-phenolic was therefore
substituted for the nylon phenolic, since material test data indicate very
similar ablation rates and thermal properties.

(U) In order to verify successful operation for all duty cycles, the analy-
sis was redone with the new motor design and newly selected materials.

A motor thrust duty cycle was assumed which would impose the most severe
heat 16ads on the motor components. The thrust duty cycle assumed a
20-sec firing at a chamber pressure of 1,000 psi, a 2-min coast period, a

' 30-sec firing at a chamber pressure of 500 psi, a 4-min coast period, and
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finally a 20-sec firing at a chamber pressure of 500 psi. The following
additional assumptions were made for use in the thermal analysis:

A: No heats of ablation were considered; the material was
‘ assumed to erode at experimentally determined rates.

B. No mass efflux (transpiration) from the wallwas considered.
C. No heat of resin pyrolysis was considered.

D. No change in material properties was assumed to occur
with the charring process.

E. No convective or.radiative cooling was assumed to exist
during heat soak.

F. Nylon phenolic was assumed to ablate at the equilibrium
wall temperature (7,000° F).

(U) The effect of these assumptions is to produce the worst possible
temperature profile and hence a conservative design.

(U) Thermal profiles were generated for the aft closure, nozzle assembly,
and nozzle exit skirt at the locations shown on figure 75. The temperature

_profile at the start and finish of each thrust cycle is shown for each loca-

tion in figures 76, 77, and 78.

{(U) As cazi be- seen from the temperature histories in the thermal profile,
outside wall temperatures. remain under control throughout the duty cycle.

. Sufficient material is present in nozzle and closure walls to ensure against

the occurrence of a complete char-through during the useful life of the
motor. Therefore, wall thicknesses were determined by the obtained ther-
mal profiles. In the case of the aft closure insulation, anadditional effect
was considered, The NAS 7-311 material tests using nylon-phenolic aft
closure insulation disclosed two distinct ablation patterns as follows;dur-
ing full thrust operation, the nylon phenolic ablated uniformly at approxi-
mately 7.mils/sec; however, at minimum thrust, local erosion rates of
20 to 25 mils/sec were obtained in the port impingement area. The high
erosion rates were unique with the fuel used on NAS 7-311, but the high
rates were used to design the Mark II aft closure -on this contractand, there-
fore, resulted in a conservative design. A subsequent test conducted with
the Mark II motor indicates that uniform and low ablation rates are to be
obtained from the nylon, but further testing is necessary to determine the
required aft closure thickness.

134

UNCLASSIFIED

-




UNCLASSIFIED

n
= | OCATION OF TEMPERATURE
= PROFILES 1S INDICATED

1 BY SECTION LINES
i

NOZZLE THROAT
(SEE FIGURE 79)

P
\‘\\\\‘\\\\‘\\\\‘\\\\-

g A

N

NOZZLE EXIT €=2
(SEE FIGURE 80)

R-60880

Figure 75. (U) Location of Temperature Profiles
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(U) The Mark II thrust chamber configuration (motor No. 007) was tested
for 5 sec at a chamber pressure of 1,000 psi in the first test of what was
to have been a series of four tests to determine fuel flow rate at the boost
thrust level. However, a defective weld on the aft injector failed during
ignition and caused the test series to be terminated after 4. 8 sec of the
5-sec test. After disassembly the aft closure insulation was sectioned as
shown in figure 79. No significant char buildup is present on the inside
surface, indicating that the insulation is performing as desired. However,
a dimensional stability problem first encountered during closure fabrica-
tion is evident, resulting in fracturing of the closure. The nylon~phenolic
closure has the tendency to shrink after fabrication. In spité of much care
given to the part during cure (careful control of the cure cycle, removal

from tool at 325°, 24-hr cooldown period), the part continues to change
size and shape.

(U) The thickness of the material (2. 0 in.) contributed to the problem.
The required thickness was determined from the high erosionrates obtained
on Contract NAS 7-311 for the same material. It has sincebeendetermined
that the higher rates are the results of chemical attack by the fuel system
being used on that contract. For futare testing, the closure will be modi-
fied to include 0. 75 in. of buna-N rubber on the outer surface. Thereduced
nylon-phenolic material thickness is ‘sufficient to survive the extreme duty
cycle assumed for thermal analysis, '

(U)  The Mark II nozzle, shown in figures 80 and 81, appears tobe adequate
for the duty cycle. The magnesia-phenolic heat shield on the submerged
entrance ablated at a rate of approximately 30 mils/sec, while no increase
in throat diameter occurred. The postfire throat diameter was approxi-
mately 0. 050 in. smaller than the prefire diameter, a condition which is
normal with ablative throats, but no visible evidence of distortionwas noted.
The nozzle was not sectioned and will be used on a subsequent test.
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Figure 80. (U) Mark II Configuration Mozzle Assembly
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Figure 81. (U) Mark II Configuration
Nozzle Assembly After Test :
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MATERIALS EVALUATION

(U) Hybrid rocket motors impose a unique motor case insulation problem
on the designer in addition toproviding harsh nozzle requirements. Hybrid
rocket motors require a plenum chamber for mixing oxidizer and fuel
vapors which is subjected to extremely high heat loads and to attack by

a variety of chemical species. In order to evaluate several materials for
applicationin full-scale motor development for nozzle and plenum materials,
a series of ten 5. 0-in. -diameter motor tests were conducted with several
vendor -supplied material samples, The pertinent motor parameters for
these 10 tests are listed in table XVII. The following nozzle and plenum

. materials were tested.

A. National carbon ATJ graphite

B. Great Lakes Carbon Corp. graphite cloth impregnated with
9.3%carbon-filled hi~-char phenolic resin system. (Material
designated WBC 8207-1 by manufacturer.)

C. - National carbon graphite cloth impregnated with a 7%carbon-
filled phenolic resin system (Western Backing‘Corp. , 2242},
employing 35% resin solids. (Material designated WCB 8206
by manufacturer, )

D. National carbon graphite cloth impregnated with 8% carbon-
filled hi-char resin system (WBC 2223) employing 36%resin
solids. (Material designated WBC 8251 by manufacturer.)

E. National carbon graphite cloth impregnated with 10% refrac-
tory boride-filledhi-char resin system (WBC 2223)., (Mate-
rial designated as WBC 8218 by the manufacturer.)

F, National carbon cloth impregnated with Evercoat EC221
phenolic design system, employing 7% carbon filler. (Mate-
rial designated WBC 8221 by manufacturer.)

G. John-Manville Tx magnesium hydroxide paper impregnated

with the high -char phenolic resin system (WBC 2223).
(Material designated as WBC 7207 by manufacturer. )

14
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H. H. I. Thompson Corporation zirconia paper impregnated
with the WBC 2223 high-char phenolic resin system. (Mate-~
rial designated as WBC 7209 by the manufacturer.)

I. United Technology Center's alumina foam, impregnated with
Monsanto SC 1008 phenolic resin.

J. A chromic-oxide finished silica cloth (Hitco Irish Refrasil)
impregnated with Western Backing Corporation's high-char
phenolic resin system (2223) employing 34% resin solids, No
filler was used. (Material designated WBC 2234 by
manufacturer. )

(U) The materials listed in table XVII were prepared as 2.0 -in. inside
diameter (ID) orifices for the mixer assembly of a 5, 0-in. diameter motor
shown in‘figure 82, The specimens were tested in the 5. 0-in, ~diameter
motor at 300 psi for durations of 10 sec,

f
(U) After test, the samples were sectioned as shown in figure 83 and
char depth and material erosion was measured, The measurements listed
in table XVIlIlare described by figure 84,

(U) Of the test samples, those containing carbon cloth exhibit the greatest
resistance to erosion. The best sample being WBC 8207 next to the ATJ
graphite control specimen. Samples 2, 3, and 6 exhibit equally low erosion
rates with small dimensional change inthe internal diameter. The material
in sample 4 has been selected for evaluation as a nozzle throat insert matz-
rial to replace the ATJ graphite insert. The choice was made on the basis
of low combined erosion and char depths.

(U) Limited subscale testing is now called for with material samples
used as nozzles., Of these samples, all are probably capable of serving
at chamber pressures up to 1, 000 psi. However, evaluation is now needed
at chamber pressures of from 1, 000 to 2, 000 psi simulating those anticipated
in tactical missile systems,
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MEASUREMENTS TAKEN

(all dimensions in inches)

a
b
€

Erosion depth

Erosion depth
Char depth
4 D=2 AR= Radial erosion
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APPENDIX II

(U) MOTOR ASSEMBLY DRAWINGS
OF MARK II CONFIGURATION THRUST CHAMBER ASSEMBLY
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PREPARE MATING BURFALE BETWEEN ITEMS 2. 4
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" SOLUTION OF 841 M{ 35 *7 HYDROCHLORIC ACID, 89 miA,
85% PUOSPHORIC AZID AND 43 mt OF GO%e
HYDROFLUORIC ACID.

c.emsf WITH DISTILLED WATER,
¢, FORCE AIR DRY FOR 30 MINUTES (Min).

& 2OND HEM L TO ITLM 4 USING ITEM G,
ALTERNATE FOR ITEM €&, ADHESIVE, EPON NO. 421
SHELL CHEMICAL CO," FITTSSURG CAUF.

&NARMCO MATERIALS OV OF TELE COMPUTING
CORP, COSTA MESA, CALIF

ALL FILLET RAOII .O20R.
OIMENSIONS GIVEN ARE FINISHED BIZES.

5 | v 4 | 3 i 2 ] i
e M il
3 i) A ]
. NOIES: f.'ON  F/0  AcceD Oim it § Kne
[Q& MOLD AT BO%B1E F, 1000 A3l FOR 2 HCURS £ UNLEDD OTHERWISE SPECIFIED: PEMOVE ALL 500, 3.08 Kef, .2X, 868 R
AND BOMD TO ITEMD 2Z AND B WITH ITEU 5, BURRS, BREAK ALL “HARP EDGED .Q0O%-,0iG. @33 AL { CSIDIN htad o

. oN 7/D REravid . 80 o
3. o9 /0 ST R wis T
WG 17019043

RBBER STAMP PART NO. WITH .12 (MIN) HIGH
CHARACTERS APPROX AS SHOWN.

4 CHANGES OR SUBSTITUTIONS NOT AFFECTING
FLNCTION OF PART MAY BE MARE UPON
APPROVAL OF PROJECT ENGINEER.

CRACKS AND DELAMINATIONS NOT PERMISSLIBLE,

WESTERN BACKING CORP, 331120 HELMS AVE,
CUWVER CITY, CALIF

LAMINATE (TEM 2 PARALLEL TO OUTSIDE SURFACE
OF ITEM 3 ANG CURE 310%325°F, 1000 PSI
FOR A MIN OF B HOUR%.

A\LAMIMATE ITEM 3 AT GO® TO 4 OF PART AND
CURE AT 210°315°F , 1000PS]| FOR A MIN OF B HOURS,
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